導航:首頁 > 網路設置 > 卷積神經網路參數應該怎麼設置

卷積神經網路參數應該怎麼設置

發布時間:2022-04-28 16:22:19

A. 如何在卷積神經網路中,當識別率低的時候設置大的學習率,識別率高的時候設置小的學習率。

把學習率作為placeholder試試

B. 如何用tensorflow搭建卷積神經網路

在MNIST數據集上,搭建一個簡單神經網路結構,一個包含ReLU單元的非線性化處理的兩層神經網路。在訓練神經網路的時候,使用帶指數衰減的學習率設置、使用正則化來避免過擬合、使用滑動平均模型來使得最終的模型更加健壯。
程序將計算神經網路前向傳播的部分單獨定義一個函數inference,訓練部分定義一個train函數,再定義一個主函數main。

二、分析與改進設計
1. 程序分析改進
第一,計算前向傳播的函數inference中需要將所有的變數以參數的形式傳入函數,當神經網路結構變得更加復雜、參數更多的時候,程序的可讀性將變得非常差。
第二,在程序退出時,訓練好的模型就無法再利用,且大型神經網路的訓練時間都比較長,在訓練過程中需要每隔一段時間保存一次模型訓練的中間結果,這樣如果在訓練過程中程序死機,死機前的最新的模型參數仍能保留,杜絕了時間和資源的浪費。
第三,將訓練和測試分成兩個獨立的程序,將訓練和測試都會用到的前向傳播的過程抽象成單獨的庫函數。這樣就保證了在訓練和預測兩個過程中所調用的前向傳播計算程序是一致的。
2. 改進後程序設計
mnist_inference.py
該文件中定義了神經網路的前向傳播過程,其中的多次用到的weights定義過程又單獨定義成函數。
通過tf.get_variable函數來獲取變數,在神經網路訓練時創建這些變數,在測試時會通過保存的模型載入這些變數的取值,而且可以在變數載入時將滑動平均值重命名。所以可以直接通過同樣的名字在訓練時使用變數自身,在測試時使用變數的滑動平均值。
mnist_train.py
該程序給出了神經網路的完整訓練過程。
mnist_eval.py
在滑動平均模型上做測試。
通過tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)獲取最新模型的文件名,實際是獲取checkpoint文件的所有內容。

C. 怎樣用python構建一個卷積神經網路

用keras框架較為方便

首先安裝anaconda,然後通過pip安裝keras


以下轉自wphh的博客。

#coding:utf-8

'''
GPUruncommand:
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32pythoncnn.py
CPUruncommand:
pythoncnn.py

2016.06.06更新:
這份代碼是keras開發初期寫的,當時keras還沒有現在這么流行,文檔也還沒那麼豐富,所以我當時寫了一些簡單的教程。
現在keras的API也發生了一些的變化,建議及推薦直接上keras.io看更加詳細的教程。

'''
#導入各種用到的模塊組件
from__future__importabsolute_import
from__future__importprint_function
fromkeras.preprocessing.imageimportImageDataGenerator
fromkeras.modelsimportSequential
fromkeras.layers.coreimportDense,Dropout,Activation,Flatten
fromkeras.layers.advanced_activationsimportPReLU
fromkeras.layers.,MaxPooling2D
fromkeras.optimizersimportSGD,Adadelta,Adagrad
fromkeras.utilsimportnp_utils,generic_utils
fromsix.movesimportrange
fromdataimportload_data
importrandom
importnumpyasnp

np.random.seed(1024)#forreprocibility
#載入數據
data,label=load_data()
#打亂數據
index=[iforiinrange(len(data))]
random.shuffle(index)
data=data[index]
label=label[index]
print(data.shape[0],'samples')

#label為0~9共10個類別,keras要求格式為binaryclassmatrices,轉化一下,直接調用keras提供的這個函數
label=np_utils.to_categorical(label,10)

###############
#開始建立CNN模型
###############

#生成一個model
model=Sequential()

#第一個卷積層,4個卷積核,每個卷積核大小5*5。1表示輸入的圖片的通道,灰度圖為1通道。
#border_mode可以是valid或者full,具體看這里說明:http://deeplearning.net/software/theano/library/tensor/nnet/conv.html#theano.tensor.nnet.conv.conv2d
#激活函數用tanh
#你還可以在model.add(Activation('tanh'))後加上dropout的技巧:model.add(Dropout(0.5))
model.add(Convolution2D(4,5,5,border_mode='valid',input_shape=(1,28,28)))
model.add(Activation('tanh'))


#第二個卷積層,8個卷積核,每個卷積核大小3*3。4表示輸入的特徵圖個數,等於上一層的卷積核個數
#激活函數用tanh
#採用maxpooling,poolsize為(2,2)
model.add(Convolution2D(8,3,3,border_mode='valid'))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2,2)))

#第三個卷積層,16個卷積核,每個卷積核大小3*3
#激活函數用tanh
#採用maxpooling,poolsize為(2,2)
model.add(Convolution2D(16,3,3,border_mode='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))

#全連接層,先將前一層輸出的二維特徵圖flatten為一維的。
#Dense就是隱藏層。16就是上一層輸出的特徵圖個數。4是根據每個卷積層計算出來的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全連接有128個神經元節點,初始化方式為normal
model.add(Flatten())
model.add(Dense(128,init='normal'))
model.add(Activation('tanh'))


#Softmax分類,輸出是10類別
model.add(Dense(10,init='normal'))
model.add(Activation('softmax'))


#############
#開始訓練模型
##############
#使用SGD+momentum
#model.compile里的參數loss就是損失函數(目標函數)
sgd=SGD(lr=0.05,decay=1e-6,momentum=0.9,nesterov=True)
model.compile(loss='categorical_crossentropy',optimizer=sgd,metrics=["accuracy"])


#調用fit方法,就是一個訓練過程.訓練的epoch數設為10,batch_size為100.
#數據經過隨機打亂shuffle=True。verbose=1,訓練過程中輸出的信息,0、1、2三種方式都可以,無關緊要。show_accuracy=True,訓練時每一個epoch都輸出accuracy。
#validation_split=0.2,將20%的數據作為驗證集。
model.fit(data,label,batch_size=100,nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)


"""
#使用dataaugmentation的方法
#一些參數和調用的方法,請看文檔
datagen=ImageDataGenerator(
featurewise_center=True,#setinputmeanto0overthedataset
samplewise_center=False,#seteachsamplemeanto0
featurewise_std_normalization=True,#divideinputsbystdofthedataset
samplewise_std_normalization=False,#divideeachinputbyitsstd
zca_whitening=False,#applyZCAwhitening
rotation_range=20,#(degrees,0to180)
width_shift_range=0.2,#(fractionoftotalwidth)
height_shift_range=0.2,#randomlyshiftimagesvertically(fractionoftotalheight)
horizontal_flip=True,#randomlyflipimages
vertical_flip=False)#randomlyflipimages

#
#(std,mean,)
datagen.fit(data)

foreinrange(nb_epoch):
print('-'*40)
print('Epoch',e)
print('-'*40)
print("Training...")
#
progbar=generic_utils.Progbar(data.shape[0])
forX_batch,Y_batchindatagen.flow(data,label):
loss,accuracy=model.train(X_batch,Y_batch,accuracy=True)
progbar.add(X_batch.shape[0],values=[("trainloss",loss),("accuracy:",accuracy)])

"""


D. 卷積神經網路用全連接層的參數是怎麼確定的

卷積神經網路用全連接層的參數確定:卷積神經網路與傳統的人臉檢測方法不同,它是通過直接作用於輸入樣本,用樣本來訓練網路並最終實現檢測任務的。

它是非參數型的人臉檢測方法,可以省去傳統方法中建模、參數估計以及參數檢驗、重建模型等的一系列復雜過程。本文針對圖像中任意大小、位置、姿勢、方向、膚色、面部表情和光照條件的人臉。

輸入層

卷積神經網路的輸入層可以處理多維數據,常見地,一維卷積神經網路的輸入層接收一維或二維數組,其中一維數組通常為時間或頻譜采樣;二維數組可能包含多個通道;二維卷積神經網路的輸入層接收二維或三維數組;三維卷積神經網路的輸入層接收四維數組。

由於卷積神經網路在計算機視覺領域應用較廣,因此許多研究在介紹其結構時預先假設了三維輸入數據,即平面上的二維像素點和RGB通道。

E. 卷積神經網路是如何反向調整參數的

參數調整流程:
計算loss--loss是根據網路輸入值和真實值求解獲得,與網路參數有關
根據loss使用梯度下降法進行反向傳播--梯度下降的BP演算法,參考微積分鏈式求導法則.
結束..
可以追問的~~

F. 深度神經網路dnn怎麼調節參數

這兩個概念實際上是互相交叉的,例如,卷積神經網路(Convolutionalneuralnetworks,簡稱CNNs)就是一種深度的監督學習下的機器學習模型,而深度置信網(DeepBeliefNets,簡稱DBNs)就是一種無監督學習下的機器學習模型。深度學習的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。深度學習的概念由Hinton等人於2006年提出。基於深信度網(DBN)提出非監督貪心逐層訓練演算法,為解決深層結構相關的優化難題帶來希望,隨後提出多層自動編碼器深層結構。此外Lecun等人提出的卷積神經網路是第一個真正多層結構學習演算法,它利用空間相對關系減少參數數目以提高訓練性能。

G. 卷積神經網路中的learn rate是怎麼設置的

學習率的作用是不斷調整權值閾值。對於traingdm等函數建立的BP網路,學習速率一般取0.01-0.1之間。

H. 卷積神經網路訓練的參數是什麼

嗯,卷積神經網路是一個通過他的訓練的話,那他是知道她有一個參數,通過它的參數,你才能知道他的個訓練的一個參數的一個對比值。

I. 怎樣用python構建一個卷積神經網路

用keras框架較為方便

首先安裝anaconda,然後通過pip安裝keras

J. 深度學習Caffe實戰筆記Caffe平台下,怎樣調整卷積神經網路結構

調整cnn網路結構需要增加或者減少layer的層數,並且更改layer的類型,比如在現有的conv層和pooling層後面繼續增加conv層和pooling層,目的是為了提取更高層次的特徵。當然你也可以增加全連接層數目(那麼做訓練會變慢--、),修改激活函數和填充器類型。建議你還是使用caffe中自帶的cifar10_quick和caffenet進行訓練,然後針對你的數據修改相應的網路參數和solver參數。

閱讀全文

與卷積神經網路參數應該怎麼設置相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:614
電腦無法檢測到網路代理 瀏覽:1491
筆記本電腦一天會用多少流量 瀏覽:826
蘋果電腦整機轉移新機 瀏覽:1451
突然無法連接工作網路 瀏覽:1215
聯通網路怎麼設置才好 瀏覽:1316
小區網路電腦怎麼連接路由器 瀏覽:1208
p1108列印機網路共享 瀏覽:1284
怎麼調節台式電腦護眼 瀏覽:846
深圳天虹蘋果電腦 瀏覽:1084
網路總是異常斷開 瀏覽:691
中級配置台式電腦 瀏覽:1145
中國網路安全的戰士 瀏覽:707
同志網站在哪裡 瀏覽:1529
版觀看完整完結免費手機在線 瀏覽:1528
怎樣切換默認數據網路設置 瀏覽:1229
肯德基無線網無法訪問網路 瀏覽:1455
光纖貓怎麼連接不上網路 瀏覽:1658
神武3手游網路連接 瀏覽:1045
局網列印機網路共享 瀏覽:1068