導航:首頁 > 電腦推薦 > 台式電腦主板復位信號圖解

台式電腦主板復位信號圖解

發布時間:2022-05-19 03:24:03

A. 電腦主機電源開關附近還有個小一點的按鈕是什麼,起什麼作用的

它是重啟按鈕,也稱為重置按鈕,可以重新啟動計算機。

重新啟動是重新打開計算機並重新載入操作系統;關閉Windows中支持快速啟動和完全關閉的快速啟動功能,然後通過冷啟動啟動系統。

台式計算機的重置按鈕通常靠近機箱上的啟動按鈕,筆記本的重置按鈕位於鍵盤頂部。同時按計算機鍵盤上的CTRL + ALT + DEL復位,即軟復位,也稱為熱啟動。


(1)台式電腦主板復位信號圖解擴展閱讀:

重啟按鈕的工作原理

主板上的所有復位信號均由晶元組產生,主要由南橋(帶內部復位系統控制器)或復位發生器(74H系列晶元)產生,即主板上需要的所有設備和模塊重啟。由南橋重置。

如果南橋想要生成復位信號或者南橋想要重置其他設備和模塊,則必須先重置自己或者先說它有一個復位源。南橋或南橋的復位源是ATX電源。灰線(灰線通常為5V電平,運行後恆定5V,ATX電源的灰線也是PG信號),或來自系統電源管理晶元的PG信號。

B. 主板的復位信號和PG信號是什麼意思

復位電路(CPU的PG信號和復位信號都是由復位電路供給的):

主板上的所有復位信號都是由晶元組產生,其主要由南橋產生(內部有復位系統控制器),也就是說主板上所有的需要復位的設備和模塊都由南橋來復位。南橋要想產生復位信號或者說南橋要想去復位其他的設備和模塊,其首先要自身先復位或者說自身先有復位源。使南橋復位的或者說南橋的復位源是ATX電源的灰線(灰線常態為5V電平,工作後為恆定的5V,ATX電源的灰線也是PG信號),或者是系統電源管理晶元發出的PG信號常態。

ATX電源的灰線在電源的工作瞬間會有一個延時的過程。此延時的過程是相當於黃線和紅線而言,延時的時間是100~500ms。也就是說灰線在ATX電源的工作瞬間會有一個低電平到高電平變化的過程。也就是0~1變化的電平信號。此瞬間變化的0~1電平信號會直接或者間接的作用於南橋內的復位系統控制器,首先讓南橋本身先復位。當南橋復位後,南橋內部的復位系統控制器會把灰線5V信號進行分解處理,產生不同的復位信號,直接或者間接通過門電路或者電子開關發出。直接加入後級所有的設備或模塊中,同時各設備和模塊也被瞬間復位。CPU的復位信號由北橋產生,如果是電源管理器發出的PG信號,此信號在加電的瞬間也是一個0~1變化的跳變過程。此信號也會重復以上的動作,讓南橋復位。南橋再發出其它復位信號(在筆記本電路中較為常用)。在某些主板上CPU的PG信號是由電源管理器的PG信號直接供給,還有的是由ATX電源的灰線間接供給,通常主板上的復位電路由RESET開關來控制,此復位開關一端為低電平一端為高電平,低電平通常接地,高電平由紅線和灰線間接供給,通常為3.3V,此復位鍵的某一端也會直接或間接作用於南橋內的復位系統控制器,當微機需要強行復位時,瞬間短接復位開關。在開關的高電平端會產生一個低電平信號,此信號會直接或者間接作用於南橋內的復位系統控制器,使南橋強行復位之後,南橋也會強行去復位其它的設備和模塊,這樣就達到一個強行復位的過程,也就是常說的冷啟動。

ISA匯流排的復位信號到南橋之間會有一個非們,跟隨器或電子開關,常態時為低電平,復位時為高電平。IDE的復位和ISA匯流排正好相反,通常兩者之間會有一個非門或是一個反向電子開關,也就是說IDE常態時為高電平,復位時為低電平,這里的高電平為5V或3.3V,低電平為0.5V以下的電位。

如果主板上沒有ISA匯流排,也就是8XX系列晶元組的主板,IDE的復位直接來自於南橋,在兩者之間通常也會有一個非門或是反向電子開關,PCI匯流排的復位直接來自於南橋,有些主板會在兩者之間加有跟隨器,此跟隨器起緩沖延時作用。且PCI的常態為3.3V 或5V,復位時為0V,AGP匯流排的復位信號和PCI匯流排的復位信號是同路產生。也有的主板AGP匯流排的復位也是由南橋直接供給,常態時為高電平,復位時為低電平,對於北橋的復位信號也是和PCI匯流排的復位信號同路產生,也就是說PCI匯流排的復位信號,AGP匯流排的復位信號和北橋的復位信號通常是串在一根線上的,復位信號都相同,對於CPU的復位信號,不同的主板都是由北橋供給,I/O的復位信號是由南橋直接供給,通常是3.3V或5V。在8XX系列晶元組的主板中,固件中心(B205)和時鍾發生器晶元也有復位信號,且復位信號由南橋直接供給,常態為3.3V,復位時為0V。

在華碩主板中,主板上所有的復位信號通常有一個單獨的晶元產生,常見的型號是AS97127;此晶元受控於南橋晶元

C. 台式電腦復位鍵在哪

復位鍵也叫重啟鍵。

台式電腦的復位鍵在機箱上一般在啟動鍵附近,筆記本電腦的復位鍵在鍵盤頂。在電腦鍵盤上同時按下CTRL+ALT+DEL也可以復位,為軟復位,又叫熱啟動。

(3)台式電腦主板復位信號圖解擴展閱讀

復位鍵是存在於電腦主機、筆記本電腦、智能手機、智能PDA或其它電子產品的鍵位,又叫重啟鍵,即RESET。因其功能原因,位置一般比較隱蔽,不容易碰觸。

作用

它的作用是當電子產品或電腦死機的時候按下此鍵,能夠在不斷電的情況下,使其重新啟動。

工作原理

復位鍵是把當前CPU及運行數據清零後的啟動。不涉及斷電。

(3)台式電腦主板復位信號圖解擴展閱讀來源:網路-復位鍵

D. 電腦主板復位電路

1、手動按鈕復位

手動按鈕復位需要人為在復位輸入端RST上加入高電平(圖1)。一般採用的辦法是在RST端和正電源Vcc之間接一個按鈕。當人為按下按鈕時,則Vcc的+5V電平就會直接加到RST端。手動按鈕復位的電路如所示。由於人的動作再快也會使按鈕保持接通達數十毫秒,所以,完全能夠滿足復位的時間要求。

2、上電復位

AT89C51的上電復位電路,只要在RST復位輸入引腳上接一電容至Vcc端,下接一個電阻到地即可。對於CMOS型單片機,由於在RST端內部有一個下拉電阻,故可將外部電阻去掉,而將外接電容減至1uF。上電復位的工作過程是在加電時,復位電路通過電 容加給RST端一個短暫的高電平信號,此高電平信號隨著Vcc對電容的充電過程而逐漸回落,即RST端的高電平持續時間取決於電容的充電時間。為了保證系統能夠可靠地復位,RST端的高電平信號必須維持足夠長的時間。上電時,Vcc的上升時間約為10ms,而振盪器的起振時間取決於振盪頻率,如晶振頻率為10MHz,起振時間為1ms;晶振頻率為1MHz,起振時間則為10ms。復位電路中,當Vcc掉電時,必然會使RST端電壓迅速下降到0V以下,但是,由於內部電路的限製作用,這個負電壓將不會對器件產生損害。另外,在復位期間,埠引腳處於隨機狀態,復位後,系統將埠置為全「l」態。如果系統在上電時得不到有效的復位,則程序計數器PC將得不到一個合適的初值,因此,CPU可能會從一個未被定義的位置開始執行程序。

3、積分型上電復位

常用的上電或開關復位電路如圖3所示。上電後,由於電容C3的充電和反相門的作用,使RST持續一段時間的高電平。當單片機已在運行當中時,按下復位鍵K後松開,也能使RST為一段時間的高電平,從而實現上電或開關復位的操作。

根據實際操作的經驗,下面給出這種復位電路的電容、電阻參考值。

C=1uF,Rl=lk,R2=10k

E. 台式機主板上的RMSRST是什麼意思啊那個是什麼晶元啊

這個是個復位信號,應該是RSMRST#吧? EC復位南橋的一個信號。是做維修的么?在EC供電時鍾復位正常後發出傳遞給南橋,當做南橋的復位。一般這個信號沒有3.3V的話是不會觸發的。

F. 電腦主板的復位鍵在哪裡

你仔細查看主板上的插針,一般在與CPU相對的那一面的邊緣,標識有F_panel的插針是電腦開關,復位及硬碟,信號燈,各自有不同的標識,復位一般是RESET,不同的主板略有不同,不過都是英文簡寫。

G. 台式電腦主板BIOS如何恢復出廠設置圖解方法

如果我們的BIOS主板設置有誤,會造成某些硬體無法正常工作,這時我們就需要對BIOS進行恢復出廠設置。主要有兩種方法:

第一種方法:

第一步:電腦開機時不停按Delete鍵(筆記本一般是F2鍵)進入BIOS設置界面。

H. 電腦主板各部件詳細圖解

電腦主板各部分詳解是什麼呢?

大家知道,主板是所有電腦配件的總平台,其重要性不言而喻。而下面我們就以圖解的形式帶你來全面了解主板。
一、主板圖解
一塊主板主要由線路板和它上面的各種元器件組成
1.線路板PCB印製電路板是所有電腦板卡所不可或缺的東東。它實際是由幾層樹脂材料粘合在一起的,內部採用銅箔走線。一般的PCB線路板分有四層,最上和最下的兩層是信號層,中間兩層是接地層和電源層,將接地和電源層放在中間,這樣便可容易地對信號線作出修正。而一些要求較高的主板的線路板可達到6-8層或更多。此主題相關圖片如下:主板(線路板)是如何製造出來的呢?PCB的製造過程由玻璃環氧樹脂(Glass Epoxy)或類似材質製成的PCB「基板」開始。製作的第一步是光繪出零件間聯機的布線,其方法是採用負片轉印(Subtractive transfer)的方式將設計好的PCB線路板的線路底片「印刷」在金屬導體上。這項技巧是將整個表面鋪上一層薄薄的銅箔,並且把多餘的部份給消除。而如果製作的是雙面板,那麼PCB的基板兩面都會鋪上銅箔。而要做多層板可將做好的兩塊雙面板用特製的粘合劑「壓合」起來就行了。接下來,便可在PCB板上進行接插元器件所需的鑽孔與電鍍了。在根據鑽孔需求由機器設備鑽孔之後,孔璧里頭必須經過電鍍(鍍通孔技術,Plated-Through-Hole technology,PTH)。在孔璧內部作金屬處理後,可以讓內部的各層線路能夠彼此連接。在開始電鍍之前,必須先清掉孔內的雜物。這是因為樹脂環氧物在加熱後會產生一些化學變化,而它會覆蓋住內部PCB層,所以要先清掉。清除與電鍍動作都會在化學過程中完成。接下來,需要將阻焊漆(阻焊油墨)覆蓋在最外層的布線上,這樣一來布線就不會接觸到電鍍部份了。然後是將各種元器件標示網印在線路板上,以標示各零件的位置,它不能夠覆蓋在任何布線或是金手指上,不然可能會減低可焊性或是電流連接的穩定性。此外,如果有金屬連接部位,這時「金手指」部份通常會鍍上金,這樣在插入擴充槽時,才能確保高品質的電流連接。 最後,就是測試了。測試PCB是否有短路或是斷路的狀況,可以使用光學或電子方式測試。光學方式採用掃描以找出各層的缺陷,電子測試則通常用飛針探測儀(Flying-Probe)來檢查所有連接。電子測試在尋找短路或斷路比較准確,不過光學測試可以更容易偵測到導體間不正確空隙的問題。 線路板基板做好後,一塊成品的主板就是在PCB基板上根據需要裝備上大大小小的各種元器件—先用SMT自動貼片機將IC晶元和貼片元件「焊接上去,再手工接插一些機器幹不了的活,通過波峰/迴流焊接工藝將這些插接元器件牢牢固定在PCB上,於是一塊主板就生產出來了。此主題相關圖片如下:另外,線路板要想在電腦上做主板使用,還需製成不同的板型。其中AT板型是一種最基本板型,其特點是結構簡單、價格低廉,其標准尺寸為33.2cmX30.48cm,AT主板需與AT機箱電源等相搭配使用,現已被淘汰。而ATX板型則像一塊橫置的大AT板,這樣便於ATX機箱的風扇對CPU進行散熱,而且板上的很多外部埠都被集成在主板上,並不像AT板上的許多COM口、列印口都要依*連線才能輸出。另外ATX還有一種Micro ATX小板型,它最多可支持4個擴充槽,減少了尺寸,降低了電耗與成本。
2.北橋晶元
晶元組(Chipset)是主板的核心組成部分,按照在主板上的排列位置的不同,通常分為北橋晶元和南橋晶元,如Intel的i845GE晶元組由82845GE GMCH北橋晶元和ICH4(FW82801DB)南橋晶元組成;而VIA KT400晶元組則由KT400北橋晶元和VT8235等南橋晶元組成(也有單晶元的產品,如SIS630/730等),其中北橋晶元是主橋,其一般可以和不同的南橋晶元進行搭配使用以實現不同的功能與性能。此主題相關圖片如下:北橋晶元一般提供對CPU的類型和主頻、內存的類型和最大容量、ISA/PCI/AGP插槽、ECC糾錯等支持,通常在主板上*近CPU插槽的位置,由於此類晶元的發熱量一般較高,所以在此晶元上裝有散熱片。 3.南橋晶元
此主題相關如下:南橋晶元主要用來與I/O設備及ISA設備相連,並負責管理中斷及DMA通道,讓設備工作得更順暢,其提供對KBC(鍵盤控制器)、RTC(實時時鍾控制器)、USB(通用串列匯流排)、Ultra DMA/33(66)EIDE數據傳輸方式和ACPI(高級能源管理)等的支持,在*近PCI槽的位置。 4.CPU插座
CPU插座就是主板上安裝處理器的地方。主流的CPU插座主要有Socket370、Socket 478、Socket 423和Socket A幾種。其中Socket370支持的是PIII及新賽揚,CYRIXIII等處理器;Socket 423用於早期Pentium4處理器,而Socket 478則用於目前主流Pentium4處理器。此主題相關如下:而Socket A(Socket462)支持的則是AMD的毒龍及速龍等處理器。另外還有的CPU插座類型為支持奔騰/奔騰MMX及K6/K6-2等處理器的Socket7插座;支持PII或PIII的SLOT1插座及AMD ATHLON使用過的SLOTA插座等等。 5.內存插槽
此主題相關如下:內存插槽是主板上用來安裝內存的地方。目前常見的內存插槽為SDRAM內存、DDR內存插槽,其它的還有早期的EDO和非主流的RDRAM內存插槽。需要說明的是不同的內存插槽它們的引腳,電壓,性能功能都是不盡相同的,不同的內存在不同的內存插槽上不能互換使用。對於168線的SDRAM內存和184線的DDR SDRAM內存,其主要外觀區別在於SDRAM內存金手指上有兩個缺口,而DDR SDRAM內存只有一個。
6.PCI插槽此主題相關如下:PCI(peripheral component interconnect)匯流排插槽它是由Intel公司推出的一種局部匯流排。它定義了32位數據匯流排,且可擴展為64位。它為顯卡、音效卡、網卡、電視卡、MODEM等設備提供了連接介面,它的基本工作頻率為33MHz,最大傳輸速率可達132MB/s。 7.AGP插槽
此主題相關如下:AGP圖形加速埠(Accelerated Graphics Port)是專供3D加速卡(3D顯卡)使用的介面。它直接與主板的北橋晶元相連,且該介面讓視頻處理器與系統主內存直接相連,避免經過窄帶寬的PCI匯流排而形成系統瓶頸,增加3D圖形數據傳輸速度,而且在顯存不足的情況下還可以調用系統主內存,所以它擁有很高的傳輸速率,這是PCI等匯流排無法與其相比擬的。AGP介面主要可分為AGP1X/2X/PRO/4X/8X等類型。8.ATA介面
ATA介面是用來連接硬碟和光碟機等設備而設的。主流的IDE介面有ATA33/66/100/133,ATA33又稱Ultra DMA/33,它是一種由Intel公司制定的同步DMA協定,傳統的IDE傳輸使用數據觸發信號的單邊來傳輸數據,而Ultra DMA在傳輸數據時使用數據觸發信號的兩邊,因此它具備33MB/S的傳輸速度。此主題相關圖片如下:而ATA66/100/133則是在Ultra DMA/33的基礎上發展起來的,它們的傳輸速度可反別達到66MB/S、100M和133MB/S,只不過要想達到66MB/S左右速度除了主板晶元組的支持外,還要使用一根ATA66/100專用40PIN的80線的專用EIDE排線。此主題相關圖片如下:此外,現在很多新型主板如I865系列等都提供了一種Serial ATA即串列ATA插槽,它是一種完全不同於並行ATA的新型硬碟介面類型,它用來支持SATA介面的硬碟,其傳輸率可達150MB/S。
9.軟碟機介面
此主題相關如下:軟碟機介面共有34根針腳,顧名思義它是用來連接軟盤驅動器的,它的外形比IDE介面要短一些。

10.電源插口及主板供電部分
電源插座主要有AT電源插座和ATX電源插座兩種,有的主板上同時具備這兩種插座。AT插座應用已久現已淘汰。而採用20口的ATX電源插座,採用了防插反設計,不會像AT電源一樣因為插反而燒壞主板。除此而外,在電源插座附近一般還有主板的供電及穩壓電路。此主題相關圖片如下:主板的供電及穩壓電路也是主板的重要組成部分,它一般由電容,穩壓塊或三極體場效應管,濾波線圈,穩壓控制集成電路塊等元器件組成。此外,P4主板上一般還有一個4口專用12V電源插座。
11.BIOS及電池
BIOS(BASIC INPUT/OUTPUT SYSTEM)基本輸入輸出系統是一塊裝入了啟動和自檢程序的EPROM或EEPROM集成塊。實際上它是被固化在計算機ROM(只讀存儲器)晶元上的一組程序,為計算機提供最低級的、最直接的硬體控制與支持。除此而外,在BIOS晶元附近一般還有一塊電池組件,它為BIOS提供了啟動時需要的電流。
此主題相關如下:常見BIOS晶元的識別主板上的ROM BIOS晶元是主板上唯一貼有標簽的晶元,一般為雙排直插式封裝(DIP),上面一般印有「BIOS」字樣,另外還有許多PLCC32封裝的BIOS。此主題相關圖片如下:早期的BIOS多為可重寫EPROM晶元,上面的標簽起著保護BIOS內容的作用,因為紫外線照射會使EPROM內容丟失,所以不能隨便撕下。現在的ROM BIOS多採用Flash ROM(快閃可擦可編程只讀存儲器),通過刷新程序,可以對Flash ROM進行重寫,方便地實現BIOS升級。目前市面上較流行的主板BIOS主要有Award BIOS、AMI BIOS、Phoenix BIOS三種類型。Award BIOS是由Award Software公司開發的BIOS產品,在目前的主板中使用最為廣泛。Award BIOS功能較為齊全,支持許多新硬體,目前市面上主機板都採用了這種BIOS。AMI BIOS是AMI公司出品的BIOS系統軟體,開發於80年代中期,它對各種軟、硬體的適應性好,能保證系統性能的穩定,在90年代後AMI BIOS應用較少;Phoenix BIOS是Phoenix公司產品,Phoenix BIOS多用於高檔的原裝品牌機和筆記本電腦上,其畫面簡潔,便於*作,現在Phoenix已和Award公司合並,共同推出具備兩者標示的BIOS產品。12.機箱前置面板接頭機箱前置面板接頭是主板用來連接機箱上的電源開關、系統復位、硬碟電源指示燈等排線的地方。一般來說,ATX結構的機箱上有一個總電源的開關接線(Power SW),其是個兩芯的插頭,它和Reset的接頭一樣,按下時短路,松開時開路,按一下,電腦的總電源就被接通了,再按一下就關閉。而硬碟指示燈的兩芯接頭,一線為紅色。在主板上,這樣的插針通常標著IDE LED或HD LED的字樣,連接時要紅線對一。這條線接好後,當電腦在讀寫硬碟時,機箱上的硬碟的燈會亮。電源指示燈一般為兩或三芯插頭,使用1、3位,1線通常為綠色。此主題相關圖片如下:在主板上,插針通常標記為Power LED,連接時注意綠色線對應於第一針( )。當它連接好後,電腦一打開,電源燈就一直亮著,指示電源已經打開了。而復位接頭(Reset)要接到主板上Reset插針上。主板上Reset針的作用是這樣的:當它們短路時,電腦就重新啟動。而PC喇叭通常為四芯插頭,但實際上只用1、4兩根線,一線通常為紅色,它是接在主板Speaker插針上。在連接時,注意紅線對應1的位置。13.外部介面此主題相關圖片如下:ATX主板的外部介面都是統一集成在主板後半部的。現在的主板一般都符合PC'99規范,也就是用不同的顏色表示不同的介面,以免搞錯。一般鍵盤和滑鼠都是採用PS/2圓口,只是鍵盤介面一般為藍色,滑鼠介面一般為綠色,便於區別。而USB介面為扁平狀,可接MODEM,光碟機,掃描儀等USB介面的外設。而串口可連接MODEM和方口滑鼠等,並口一般連接列印機。14.主板上的其它主要晶元除此而外主板上還有很多重要晶元:音效卡晶元現在的主板集成的音效卡大部分都是AC'97音效卡,全稱是Audio CODEC'97,這是一個由Intel、Yamaha等多家廠商聯合研發並制定的一個音頻電路系統標准。主板上集成的AC97音效卡晶元主要可分為軟音效卡和硬音效卡晶元兩種。所謂的AC'97軟音效卡,只是在主板上集成了數字模擬信號轉換晶元(如ALC201、ALC650、AD1885等),而真正的音效卡被集成到北橋中,這樣會加重CPU少許的工作負擔。此主題相關圖片如下:所謂的AC'97硬音效卡,是在主板上集成了一個音效卡晶元(如創新CT5880,雅馬哈的744,VIA的Envy 24PT),這個音效卡晶元提供了獨立的聲音處理,最終輸出模擬的聲音信號。這種硬體音效卡晶元相對比軟音效卡在成本上貴了一些,但對CPU的佔用很小。網卡晶元此主題相關圖片如下:現在很多主板都集成了網卡。在主板上常見的整合網卡所選擇的晶元主要有10/100M的RealTek公司的8100(8139C/8139D晶元)系列晶元以及威盛網卡晶元等。除此而外,一些中高端主板還另外板載有Intel、3COM、Alten和Broadcom的千兆網卡晶元等,如Intel的i82547EI、3COM 3C940等等。IDE陣列晶元此主題相關圖片如下:一些主板採用了額外的IDE陣列晶元提供對磁碟陣列的支持,其採用IDE RAID晶元主要有HighPoint、Promise等公司的產品的功能簡化版本。例如Promise公司的PDC20276/20376系列晶元能提供支持0,1的RAID配置,具自動數據恢復功能。美國高端HighPoint公司的RAID晶元如HighPoint HPT370/372/374系列晶元,SILICON SIL312ACT114晶元等等。//本文來自電腦軟硬體應用網www.45it.comI/O控制晶元I/O控制晶元(輸入/輸出控制晶元)提供了對並串口、PS2口、USB口,以及CPU風扇等的管理與支持。常見的I/O控制晶元有華邦電子(WINBOND)的W83627HF、W83627THF系列等,例如其最新的W83627THF晶元為I865/I875晶元組提供了良好的支持,除可支持鍵盤、滑鼠、軟盤、並列埠、搖桿控制等傳統功能外,更創新地加入了多樣新功能,例如,針對英特爾下一代的Prescott內核微處理器,提供符合VRD10.0規格的微處理器過電壓保護,如此可避免微處理器因為工作電壓過高而造成燒毀的危險。此主題相關圖片如下:此外,W83627THF內部硬體監控的功能也同時大幅提升,除可監控PC系統及其微處理器的溫度、電壓和風扇外,在風扇轉速的控制上,更提供了線性轉速控制以及智能型自動控轉系統,相較於一般的控制方式,此系統能使主板完全線性地控制風扇轉速,以及選擇讓風扇是以恆溫或是定速的狀態運轉。這兩項新加入的功能,不僅能讓使用者更簡易地控制風扇,並延長風扇的使用壽命,更重要的是還能將風扇運轉所造成的噪音減至最低。頻率發生器晶元頻率也可以稱為時鍾信號,頻率在主板的工作中起著決定性的作用。我們目前所說的CPU速度,其實也就是CPU的頻率,如P4 1.7GHz,這就是CPU的頻率。電腦要進行正確的數據傳送以及正常的運行,沒有時鍾信號是不行的,時鍾信號在電路中的主要作用就是同步;因為在數據傳送過程中,對時序都有著嚴格的要求,只有這樣才能保證數據在傳輸過程不出差錯。時鍾信號首先設定了一個基準,我們可以用它來確定其它信號的寬度,另外時鍾信號能夠保證收發數據雙方的同步。對於CPU而言,時鍾信號作為基準,CPU內部的所有信號處理都要以它作為標尺,這樣它就確定CPU指令的執行速度。此主題相關圖片如下:時鍾信號頻率的擔任,會使所有數據傳送的速度加快,並且提高了CPU處理數據的速度,這就是我們為什麼超頻可以提高機器速度的原因。要產生主板上的時鍾信號,那就需要專門的信號發生器,也稱為頻率發生器。但是主板電路由多個部分組成,每個部分完成不同的功能,而各個部分由於存在自己的獨立的傳輸協議、規范、標准,因此它們正常工作的時鍾頻率也有所不同,如CPU的FSB可達上百兆,I/O口的時鍾頻率為24MHz,USB的時鍾頻率為48MHz,因此這么多組的頻率輸出,不可能單獨設計,所以主板上都採用專用的頻率發生器晶元來控制。此主題相關圖片如下:頻率發生器晶元的型號非常繁多,其性能也各有差異,但是基本原理是相似的。例如ICS 950224AF時鍾頻率發生器,是在I845PE/GE的主板上得到普遍採用時鍾頻率發生器,通過BIOS內建的「AGP/PCI頻率鎖定」功能,能夠保證在任何時鍾頻率之下提供正確的PCI/AGP分頻,有了起提供的這「AGP/PCI頻率鎖定」功能,使用多高的系統時鍾都不用擔心硬碟裡面精貴的數據了,也不用擔心顯卡、音效卡等的安全了,超頻,只取決於CPU和內存的品質而已了。

I. 台式機的電腦主板怎麼復位

拿下電池。20分鍾後。就復位了

閱讀全文

與台式電腦主板復位信號圖解相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:625
電腦無法檢測到網路代理 瀏覽:1503
筆記本電腦一天會用多少流量 瀏覽:853
蘋果電腦整機轉移新機 瀏覽:1461
突然無法連接工作網路 瀏覽:1226
聯通網路怎麼設置才好 瀏覽:1325
小區網路電腦怎麼連接路由器 瀏覽:1219
p1108列印機網路共享 瀏覽:1293
怎麼調節台式電腦護眼 瀏覽:856
深圳天虹蘋果電腦 瀏覽:1093
網路總是異常斷開 瀏覽:700
中級配置台式電腦 瀏覽:1158
中國網路安全的戰士 瀏覽:716
同志網站在哪裡 瀏覽:1544
版觀看完整完結免費手機在線 瀏覽:1538
怎樣切換默認數據網路設置 瀏覽:1241
肯德基無線網無法訪問網路 瀏覽:1475
光纖貓怎麼連接不上網路 瀏覽:1671
神武3手游網路連接 瀏覽:1060
局網列印機網路共享 瀏覽:1081