Ⅰ 什么是异构网络,什么是同构网络具体的概述
异构网络环境,是由不同制造商生产的计算机,网络设备和系统组成的,这些计算机系统运行不同的操作系统和通信协议,想统一其计算机资源的机构通常会面临集成异种机系统的任务。
同构网络则是指的某一环境下的局域网络.采用互相兼容操作的各个子系统.
Ⅱ 异构网络的异构网络模型
图2.1给出了一种异构网络模型。不同类型的网络,通过网关连接到核心网,最后连接到Internet网络上,最终融合成为一个整体。异构网路融合的一个重要问题是这些网络以何种方式来进行互连,为异构无线网络资源提供统一的管理平台。为了说明异构网络的融合结构,这里给出一种特定的异构网络场景,它是由无线广域网(Wireless Wide Area Network,WWAN)(例如CDMA2000)和WLAN(例如IEEE802.11)组成的异构网络系统,如图2.2所示。
一个CDMA2000网络可以分成无线接入网(Radio Access Network,RAN)和核心网络(Core Network,CN)两部分。RAN包括一些无线技术实体,如基站控制器(Base Station Controller,BSC)和基站收发设备(Base Transceiver Station,BTS),来负责无线资源的管理。CN通常包括移动交换中心(Mobile Switching Center,MSC)来实现电路交换方式、分组数据服务节点(Packet Data Serving Node,PDSN)来实现包交换方式和网络交互功能(Inter-working Function,IWF)来为包交换和电路交换提供连接。CN负责呼叫管理和建立连接。在WLAN中,移动终端(Mobile Terminals,MTs)和接入点(Access Point,AP)之间进行通信。AP在WLAN中实现物理和数据链路层的功能,也充当无线路由器来执行网络层的功能,为WLAN与其他网络提供连接。
在如图2.2中异构网络的融合结构中,通常有三种类型的融合方案,分别是松耦合结构、紧耦合结构、超紧耦合结构。接下来分别介绍这三种耦合结构。
超紧耦合是通过连接到相同的BSC上与不同的无线接入技术(Radio Access Technology,RAT)进行融合。网络的状态信息是局部的,不需要通过额外的请求来获得信息,可以应用在当网络之间是重叠覆盖的情况下。与其他的耦合方案相比,超紧耦合方案的切换时延很短,因为中间涉及到的网络实体少。但是由于这两种RAT完全不同,因此实现超紧耦合方式就需要对应用在BSC上的处理过程进行很多修改。
在紧耦合结构中,不同的RATs通过CN进行融合,耦合结点可以是MSC或者PDSN。在图2.2中,MSC或者PDSN都是负责WWAN和WLAN的连接管理、认证和定价,因此WLAN路由器需要实现相关的WWAN协议。与超紧耦合相比,这个系统仅需要对现有接入网络进行很小的修改,因此它非常容易实现。与超紧耦合相比,在切换过程中,由于涉及到很多网络的实体,因此这种方案的VHO时延增加了。
在松耦合的异构网络中,MSC与WLAN都经过通用接口与公共的Internet进行交互信息,来保持服务的连续性。但是由于每个网络需要执行网络的连接和会话的激活过程,因此这种方案执行切换时会导致时延很大。
对于超紧耦合和紧耦合方式的异构网络融合结构中,网络选择算法通常可以安排在耦合节点上,即分别是BSC和CN。但是对于松耦合方式,网络选择算法可以应用在移动终端。
Ⅲ 异构网络的异构网络的背景介绍
图1.1中给出了移动通信技术的发展过程,可以看出随着技术的改进,数据传输速率有着显着的提高,为用户提供大数据量的多媒体通信业务提供了坚实基础。到目前为止,移动通信系统已经发展到第四代,下面将简单介绍这四代移动通信的发展历程。
第一代模拟蜂窝系统(1G)开始于上个世纪80年代被用于大规模民用,主要用于提供模拟语音业务,采用的是模拟语音调制技术和频分多址技术(Frequency Division Multiple Access,FDMA),数据传输速率约为2.4kbps。其中代表性的系统有北美的高级移动电话业务(Advanced Mobile Phone Service,AMPS)、英国的全入网通信系统技术(Total Access Communications System,TACS)和北欧的移动电话(Nordic Mobile Telephone,NMT)等等。由于受到传输带宽的限制,不能进行长途漫游,仅是一种区域性的移动通信系统。另外第一代的通信系统的缺点还包括制式太多而且互不兼容、容量有限、保密性差和通信质量不高等。因此促使了第二代数字移动通信系统(2G)的发展。
第二代数字移动通信系统完成了从模拟到数字的转变,从而为用户提供数字语音业务。第二代移动通信技术可以分成两种,第一种是基于时分多址接入(Time Division Multiple Access,TDMA)的全球数字移动通信系统(Global System for Mobile,GSM)和基于码分多址接入(Code Division Multiple Access,CDMA)的IS-95系统(例如CDMA one)。
第三代移动通信系统(3G)是由日益成熟的第二代移动通信系统发展而来,其目的是提供高速数据蜂窝移动通信技术。主要的3G技术标准有四个:欧洲电信标准协会(European Telecommunications Standard Institute,ETSI)提出的WCDMA(Wideband CDMA)、北美提出的从CDMA one演进而来的CDMA2000、具有中国知识产权的时分同步的码分多址技术(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA),和在2007年国际电信联盟(International Telecommunication Union,ITU)会议上通过的全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)。第三代移动通信的最高数据传输速率可以达到2Mbps,因此可以提供相当高速的数据传输业务,例如多媒体、视频和数据等。
长期演进(Long Term Evolution,LTE)项目是3G的演进,采用的主要技术是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)和MIMO(Multiple-Input Multiple-Out-put),能够在20MHz的带宽下提供上行50Mbps和下行100Mbps的峰值速率。LTE又被成为3.9G移动通信技术。LTE-Advanced是LTE的升级版,它被称为4G的标准,它有两种制式,一种是TDD,TD-SCDMA可以演化成TDD制式,并且HSPA+(High Speed Packet Access)直接进入LTE,另一种是FDD制式,WCDMA可以演进成FDD制式。
第四代移动通信系统(4G)除了要提供更高的带宽外,还要保证任何人在任何时间、任何地点以任何方式与任何人进行通信,用户无需考虑网络传输的实现细节。从GSM到第四代,所有的技术不可能一夜间都实现,这些技术将会同时存在为用户提供服务。为了实现第四代移动通信的目标,就需要将这些不同的无线通信系统融合在一起,形成一个异构无线网络(Heterogeneous Wireless Networks,HWNs)通信系统,从而为用户提供无缝切换和服务质量(Quality of Service,QoS)保证。因此下一代移动通信网络将是异构网络,异构网络的融合是下一代网络研究的热点,也是本文研究的主要内容。
宽带无线接入技术(Broadband Wireless Access,BWA)是继1990年便携式无线电话和2000年Wi-Fi(Wireless Fidelity)出现之后的第三次无线革命,宽带无线接入技术是在广域上提供高速无线互联网接入或者计算机网络接入的技术。宽带无线接入技术的数据速率大致相当于一些有线网络,如非对称数字用户环路(Asymmetric Digital Subscriber Line,ADSL)或者电缆调制解调器,因此它通常是有线接入网络的重要补充。几种重要的宽带无线接入技术包括WLAN(Wireless Local Area Network)、WiMAX技术和WiBro(Wireless Broadband)等。WLAN通过扩频或者OFDM等技术,来连接两个或多个终端设备,并通过接入点来连接到宽带互联网上,大部分的WLAN技术是基于IEEE802.11标准。WLAN的优势包括其费用很低和传输速度快。由于WLAN工作在非授权频段,因此WLAN的发射功率很小,它覆盖范围也只有百米左右,能提供用户在小范围内移动时可以连接到网络上。而WiMAX可以在大范围内提供高速数据业务,传输速率达到30至40兆比特每秒,2011年提高到了1Gbit/s,覆盖的半径最大可以达到50km。另外WiMAX可以支持一些低速移动的用户,而且能够提供多种多样的服务,其资费也较WLAN高。由于BWA具有建网快、运营成本低、维护方便等优势,因此它的发展速度非常迅速,为推动无处不在的互联网接入和加强公共服务奠定重要的基础。 表1.1给出了三种宽带无线接入技术的主要参数,即WLAN、WiMAX和WiBro ;表1.2给出了三种3G技术的主要参数,即UMTS(Universal Mobile Telecommunications System)、EV-DO(Evolution dataOnly)以及HSDPA(High Speed Dlink Packet Access) 。比较这两张表可以看出BWA与3G技术差别很大,例如BWA支持的数据传输速率几十兆比特每秒,而3G只有几兆比特每秒;从覆盖范围可以看出,3G网络的覆盖范围要大于BWA网络;从移动性还可以看出3G网络支持高速移动的用户。因此可以看出每个网络都有它的优点和缺陷。
表1.1宽带无线接入技术的主要参数 WLAN WiMAX WiBro 峰值速率 802.11a, g=54 Mbps DL:70 Mbps DL:18.4 Mbps 802.11b=11Mbps UL:70 Mbps UL:6.1 Mbps 带宽 20MHz 5-6GHz 9MHz 多址方式 CSMA/CA OFDM/OFDMA OFDMA 双工方式 TDD TDD TDD 移动性 低 低 低 覆盖区域 小 中等 大 协议标准 IEEE802.11x 802.16 TTA&802.16e 目标市场 家庭/企业 家庭/企业 家庭/企业 表1.2 3G技术的主要参数 UMTS EV-DO HSDPA 峰值速率 DL:2 Mbps DL:3.1 Mbps DL:14 Mbps UL:2 Mbps UL:1.2 Mbps UL:2 Mbps 带宽 5MHz 1.25GHz 5MHz 多址方式 CDMA CDMA CDMA 双工方式 FDD FDD FDD 移动性 高 高 高 覆盖区域 大 大 大 协议标准 3GPP 3GPP 3GPP 目标市场 公共 公共 公共 下一代无线网络是异构无线网络融合的重要原因是:基于异构网络融合,可以根据用户的特点(例如车载用户)、业务特点(例如实时性要求高)和网络的特点,来为用户选择合适的网络,提供更好的QoS。一般来说,广域网覆盖范围大,但是数据传输速率低,而局域网正好相反。因此在实际应用中,多模终端可以根据自身的业务特点和移动性,来选择合适的网络接入。与以往的同构网络不同,在异构网络环境下,用户可以选择服务代价小,同时又能满足自身需求的网络进行接入。这是由于这些异构网络之间具有互补的特点,才使异构网路的融合显得非常重要。因此一些组织提出了不同的网络融合标准,这些组织有3GPP(The 3rd Generation Partnership Project)、MIH(The IEEE 802.21 Media Independent Handover working group)和ETSI(The European Telecommunications Standards Institute)。
无线资源管理(Radio Resource Management,RRM)是异构网络中的一个重要研究课题,RRM的目标是高效利用受限的无线频谱、传输功率以及无线网络的基础设施。RRM技术包括呼叫接入控制(Call Admission Control,CAC)、水平或者垂直切换、负载均衡、信道分配和功率控制等。3GPP提出一种协同无线资源管理技术(Common Radio Resource Management,CRRM),它是通过利用CRRM服务器对不同接入网络信息进行监测,合理的调度异构网络中的无线资源。除了协同无线资源管理算法外,还有联合无线资源管理算法(Joint Radio Resource Management,JRRM)。这些技术实际上都是为异构网络提供统一的管理平台,以达到合理利用无线资源的目的。
网络选择算法是无线资源管理中一个研究热点,网络选择算法通常可以分为呼叫接入网络选择算法和垂直网络切换选择算法。同构网络的接入和切换主要考虑接收信号的强度,而在异构网络中需要考虑不同接入网络之间的差异,因此需要考虑的因素很多,接收信号的强度只是其中的一个影响因素,其他因素如数据传输速率、价格、覆盖范围、实时性和用户的移动性等。这些都是从用户角度考虑的,如果从网络端考虑,就会涉及到提高系统的吞吐量,降低阻塞率以及均衡负载。因此网络选择对于异构网络的融合起到了至关重要的影响。本文接下来部分将主要讨论异构网络系统模型、无线资源管理、网络性能优化以及网络选择算法。
Ⅳ 什么是异构无线网络
就和手机一样无线上网
Ⅳ 异构网络的异构网络中无线资源管理技术
传统意义的无线资源管理包括接入控制、切换、负载均衡、功率控制、信道分配等,而在未来异构网络中,无线资源管理的目标还包括为用户提供无处不在的服务和进行无缝切换,并提高无线资源的利用率。异构网络中无线资源管理是传统无线资源管理的一种扩充。
异构网络中无线资源管理的研究引起了广泛的关注,比较典型的几个无线资源管理模型包括协同无线资源管理、Multi-access无线资源管理(Multi-access RRM,MRRM)和联合无线资源管理。下面分别对这三种无线资源管理方法进行具体的介绍。 3GPP在规范中提出了CRRM的概念,通过CRRM对WCDMA、WLAN和GSM/EDGE等多种RAT进行统一的管理。CRRM中两个主要技术是新发起呼叫的网络选择和漫游呼叫垂直切换的网络选择。在这里每个RAT需要执行呼叫允许接入控制、调度(Scheling)、HHO和局部功率控制(Power Control)。CRRM结构框架如图2.3所示。
每个RRM实体负责监测相应RAT的网络参数和状态信息,并将这些信息周期性发送到CRRM服务器,再由CRRM服务器处理每个网络汇报的数据,并进行分析和处理,最后将决策的结果反馈给每个RRM实体,由这些RRM实体来具体执行对应的决策。
CRRM主要的优点是可以利用负载均衡(Load Balancing,LB)来降低阻塞率和提高无线资源的利用率;根据终端的业务类型为用户选择合适的网络,从而来改善网络的QoS管理功能。 Multi-access无线资源管理是基于三个主要的结构功能模块:集中式的MRRM、分布式的MRRM和终端MRRM,如图2.4所示。
集中式的MRRM一般适用于紧耦合的融合异构网络结构。图2.5给出了集中式的MRRM架构,所谓集中式指的就是每个RAT都归一个集中的RRM控制实体来管理,这个集中的控制实体能够获得所管理区域内的所有RAT的流量、负荷以及阻塞状态等,能够起到对这些网络进行统一的管理。这种结构有一些缺点,例如两个相邻的RAT之间会产生边缘效应,还有不便于扩展,当集中式RRM管理的RATs太多时,难以管理,且效率不是很高。因此出现了分布式的MRRM架构。
如图2.6所示给出了分布式的MRRM架构,分布式的MRRM没有一个不依赖于某一个特定的MRRM实体,相应的功能分散给地位对等的RRM实体。分布式管理可以将系统的目标分配给每个分布式的RRM实体,由它们分担管理和计算的功能,这样可以降低每个节点的计算复杂度。并且系统的可靠性增加了,不会像集中式的MRRM,一旦集中RRM控制实体发生故障,整个系统就发生瘫痪了。这种框架已经在3GPP规范中得到了应用,并应用到了WCDMA和GSM/EDGE构成的异构网络系统。
基于终端的MRRM将MRRM功能和决策交由终端负责,但是这种方式还是需要网络端进行协助,例如每个网络实体需要将自身状态信息提供给每个移动终端,以便进行MRRM决策。 文献 提出了联合无线资源管理方案。该方案的核心概念是业务分离和多重连接。JRRM将业务分成基本部分和增强部分,前者由大覆盖范围的RAT来传送,例如UMTS。JRRM的目标是通过利用中心控制器来管理所有子网的容量,为不同RAT之间提供智能互联。JRRM框架与CRRM结构非常类似,但是JRRM并不仅仅局限于UMTS和GSM。此外,JRRM通过一些改变和附加特点弥补了CRRM方案。一种超紧耦合方式允许联合、管理网络与终端之间的业务流,因此联合无线资源规划和允许接入控制需要最优化频谱效率、处理不同的业务类型和QoS约束以及自适应的规划业务等。特别的是通过多重接入来利用业务分割来获得最优QoS,多重接入指的是一个终端可以同时接入到多个无线网络,从而可以将业务流分割成多个子业务流,分别通过不同的RAT来异步传送。
如图2.7中所示,JRRM结构是基于不同RATs同时覆盖的假设,每个RAT需要保证用户流量接口(User Traffic Interface,IU)、监测功能、业务调度(Traffic Schele,TRSCH)、负荷控制(Load Control,LODCL)、接入允许控制(Session Admission Control,SAC)等功能相互高效工作。业务估计模块(Traffic Estimation mole,TREST)通知每个允许接入的会话或呼叫进行接入控制,去更新每个连接的优先级信息和接入允许决策。
Ⅵ 异构网络的介绍
异构网络(Heterogeneous Network)是一种类型的网络,其是由不同制造商生产的计算机,网络设备和系统组成的,大部分情况下运行在不同的协议上支持不同的功能或应用。关于异构网络的研究最早追溯到1995的美国加州大学伯克利分校发起的BARWAN(Bay Area Research Wireless Access Network)项目,该项目负责人R.H. Katz在文献1中首次将相互重叠的不同类型网络融合起来以构成异构网络,从而满足未来终端的业务多样性需求。为了可以同时接入到多个网络,移动终端应当具备可以接入多个网络的接口,这种移动终端被称为多模终端。由于多模终端可以接入到多个网络中,因此肯定会涉及到不同网络之间的切换,与同构网络(Homogeneous Wireless Networks)中的水平切换(Horizontal Handoff, HHO)不同,这里称不同通信系统之间的切换为垂直切换(Vertical Handoff,VHO)。在此后的十几年中,异构网络在无线通信领域引起了普遍的关注,也成为下一代无线网络的发展方向。很多组织和研究机构都对异构网络进行了深入广泛的研究,如3GPP、MIH、ETSI、Lucent实验室、Ericsson研究所、美国的Georgia理工大学和芬兰的Oulu大学等。下一代无线网络将是无线个域网(如Bluetooth)、无线局域网(如Wi-Fi)、无线城域网(如WiMAX)、公众移动通信网(如2G、3G)以及Ad Hoc网络等多种接入网共存的异构无线网络2。
Ⅶ LTE中RAT什么意思
无线电接入技术(Radio Access Technology,简称:RAT)是无线通信网络的底层物理连接方法。截至2013年,很多新型的手机,例如Nexus 4或iPhone 5都能够在一台设备上支持多个RAT,例如蓝牙、Wi-Fi以及3G、4G或LTE。
术语“RAT”传统上被用在移动通信网络的可互操作性上(interoperability)。无线接入网中也有所举例。
最近,“RAT”这个术语被用在异构无线网络(Heterogeneous Wireless Networks)的讨论中。一个用户设备会在多个RAT中来选择使用哪个去连接到因特网。它的执行类似于基于IEEE 802.11(Wi-Fi)的网络中的接入点选择。
(7)异构无线网络扩展阅读:
数字直接扩频技术
工作在1700MHz频率以上,宽带载波可提供话音通信或高速率、图像通信等业务,其具有通信范围广、处理业务量大的特点,可满足城市和农村地区的基本需求。
数字无绳电话技术
可提供话音通信或中速率数据通信等业务。欧洲的DECT、日本的PHS等技术体制和采用PHS体制的UT斯达康的小灵通等系统用途比较灵活,既可用于公众网无线接入系统,也可用于专用网无线接入系统。
最适宜建筑物内部或单位区域内的专用无线接入系统。也适宜公众通信运营企业在用户变换频繁、业务量高的展览中心、证券交易场所、集贸市场组建小区域无线接入系统,或在小海岛上组建公众无线接入系统。
Ⅷ 异构无线网络的垂直切换仿真用什么软件
the current or a certain