导航:首页 > 网络设置 > hss网络安全

hss网络安全

发布时间:2022-10-04 01:18:15

A. 动态IP能否使用HSS

HSS是实现VPN的,理论上讲VPN技术不管固定IP还是动态分配IP都可以建立连接,哪怕你是拨号也可以。

HSS没有用过,如果固定IP的配置方法和ADSL虚拟拨号有区别的话,软件的设置里会有选项,如果没选项,说明使用方法一样。

B. 关于电信网络关键信息基础设施保护的思考

文 华为技术有限公司中国区网络安全与用户隐私保护部 冯运波 李加赞 姚庆天

根据我国《网络安全法》及《关键信息基础设施安全保护条例》,关键信息基础设施是指“公共通信和信息服务、能源、交通、水利、金融、公共服务、电子政务等重要行业和领域,以及其他一旦遭到破坏、丧失功能或者数据泄露,可能严重危害国家安全、国计民生、公共利益的网络设施和信息系统”。其中,电信网络自身是关键信息基础设施,同时又为其他行业的关键信息基础设施提供网络通信和信息服务,在国家经济、科教、文化以及 社会 管理等方面起到基础性的支撑作用。电信网络是关键信息基础设施的基础设施,做好电信网络关键信息基础设施的安全保护尤为重要。


一、电信网络关键信息基础设施的范围

依据《关键信息基础设施安全保护条例》第 9条,应由通信行业主管部门结合本行业、本领域实际,制定电信行业关键信息基础设施的认定规则。

不同于其他行业的关键信息基础设施,承载话音、数据、消息的电信网络(以 CT 系统为主)与绝大多数其他行业的关键信息基础设施(以 IT 系统为主)不同,电信网络要复杂得多。电信网络会涉及移动接入网络(2G/3G/4G/5G)、固定接入网、传送网、IP 网、移动核心网、IP 多媒体子系统核心网、网管支撑网、业务支撑网等多个通信网络,任何一个网络被攻击,都会对承载在电信网上的话音或数据业务造成影响。

在电信行业关键信息基础设施认定方面,美国的《国家关键功能集》可以借鉴。2019 年 4 月,美国国土安全部下属的国家网络安全和基础设施安全局(CISA)国家风险管理中心发布了《国家关键功能集》,将影响国家关键功能划分为供应、分配、管理和连接四个领域。按此分类方式,电信网络属于连接类。

除了上述电信网络和服务外,支撑网络运营的大量 IT 支撑系统,如业务支撑系统(BSS)、网管支撑系统(OSS),也非常重要,应考虑纳入关键信息基础设施范围。例如,网管系统由于管理着电信网络的网元设备,一旦被入侵,通过网管系统可以控制核心网络,造成网络瘫痪;业务支撑系统(计费)支撑了电信网络运营,保存了用户数据,一旦被入侵,可能造成用户敏感信息泄露。


二、电信网络关键信息基础设施的保护目标和方法

电信网络是数字化浪潮的关键基础设施,扮演非常重要的角色,关系国计民生。各国政府高度重视关键基础设施安全保护,纷纷明确关键信息基础设施的保护目标。

2007 年,美国国土安全部(DHS)发布《国土安全国家战略》,首次指出面对不确定性的挑战,需要保证国家基础设施的韧性。2013 年 2 月,奥巴马签发了《改进关键基础设施网络安全行政指令》,其首要策略是改善关键基础设施的安全和韧性,并要求美国国家标准与技术研究院(NIST)制定网络安全框架。NIST 于 2018 年 4 月发布的《改进关键基础设施网络安全框架》(CSF)提出,关键基础设施保护要围绕识别、防护、检测、响应、恢复环节,建立网络安全框架,管理网络安全风险。NIST CSF围绕关键基础设施的网络韧性要求,定义了 IPDRR能力框架模型,并引用了 SP800-53 和 ISO27001 等标准。IPDRR能力框架模型包括风险识别(Identify)、安全防御(Protect)、安全检测(Detect)、安全响应(Response)和安全恢复(Recovery)五大能力,是这五个能力的首字母。2018 年 5 月,DHS 发布《网络安全战略》,将“通过加强政府网络和关键基础设施的安全性和韧性,提高国家网络安全风险管理水平”作为核心目标。

2009 年 3 月,欧盟委员会通过法案,要求保护欧洲网络安全和韧性;2016 年 6 月,欧盟议会发布“欧盟网络和信息系统安全指令”(NISDIRECTIVE),牵引欧盟各国关键基础设施国家战略设计和立法;欧盟成员国以 NIS DIRECTIVE为基础,参考欧盟网络安全局(ENISA)的建议开发国家网络安全战略。2016 年,ENISA 承接 NISDIRECTIVE,面向数字服务提供商(DSP)发布安全技术指南,定义 27 个安全技术目标(SO),该SO 系列条款和 ISO 27001/NIST CSF之间互相匹配,关键基础设施的网络韧性成为重要要求。

借鉴国际实践,我国电信网络关键信息基础设施安全保护的核心目标应该是:保证网络的可用性,确保网络不瘫痪,在受到网络攻击时,能发现和阻断攻击、快速恢复网络服务,实现网络高韧性;同时提升电信网络安全风险管理水平,确保网络数据和用户数据安全。

我国《关键信息基础设施安全保护条例》第五条和第六条规定:国家对关键信息基础设施实行重点保护,在网络安全等级保护的基础上,采取技术保护措施和其他必要措施,应对网络安全事件,保障关键信息基础设施安全稳定运行,维护数据的完整性、保密性和可用性。我国《国家网络空间安全战略》也提出,要着眼识别、防护、检测、预警、响应、处置等环节,建立实施关键信息基础设施保护制度。

参考 IPDRR 能力框架模型,建立电信网络的资产风险识别(I)、安全防护(P)、安全检测(D)、安全事件响应和处置(R)和在受攻击后的恢复(R)能力,应成为实施电信网络关键信息基础设施安全保护的方法论。参考 NIST 发布的 CSF,开展电信网络安全保护,可按照七个步骤开展。一是确定优先级和范围,确定电信网络单元的保护目标和优先级。二是定位,明确需要纳入关基保护的相关系统和资产,识别这些系统和资产面临的威胁及存在的漏洞、风险。三是根据安全现状,创建当前的安全轮廓。四是评估风险,依据整体风险管理流程或之前的风险管理活动进行风险评估。评估时,需要分析运营环境,判断是否有网络安全事件发生,并评估事件对组织的影响。五是为未来期望的安全结果创建目标安全轮廓。六是确定当期风险管理结果与期望目标之间的差距,通过分析这些差距,对其进行优先级排序,然后制定一份优先级执行行动计划以消除这些差距。七是执行行动计划,决定应该执行哪些行动以消除差距。


三、电信网络关键信息基础设施的安全风险评估

做好电信网络的安全保护,首先要全面识别电信网络所包含的资产及其面临的安全风险,根据风险制定相应的风险消减方案和保护方案。

1. 对不同的电信网络应分别进行安全风险评估

不同电信网络的结构、功能、采用的技术差异很大,面临的安全风险也不一样。例如,光传送网与 5G 核心网(5G Core)所面临的安全风险有显着差异。光传送网设备是数据链路层设备,转发用户面数据流量,设备分散部署,从用户面很难攻击到传送网设备,面临的安全风险主要来自管理面;而5G 核心网是 5G 网络的神经中枢,在云化基础设施上集中部署,由于 5G 网络能力开放,不仅有来自管理面的风险,也有来自互联网的风险,一旦被渗透攻击,影响面极大。再如,5G 无线接入网(5GRAN)和 5G Core 所面临的安全风险也存在显着差异。5G RAN 面临的风险主要来自物理接口攻击、无线空口干扰、伪基站及管理面,从现网运维实践来看,RAN 被渗透的攻击的案例极其罕见,风险相对较小。5G Core 的云化、IT 化、服务化(SBA)架构,传统的 IT 系统的风险也引入到电信网络;网络能力开放、用户端口功能(UPF)下沉到边缘等,导致接口增多,暴露面扩大,因此,5G Core 所面临的安全风险客观上高于 5G RAN。在电信网络的范围确定后,运营商应按照不同的网络单元,全面做好每个网络单元的安全风险评估。

2. 做好电信网络三个平面的安全风险评估

电信网络分为三个平面:控制面、管理面和用户面,对电信网络的安全风险评估,应从三个平面分别入手,分析可能存在的安全风险。

控制面网元之间的通信依赖信令协议,信令协议也存在安全风险。以七号信令(SS7)为例,全球移动通信系统协会(GSMA)在 2015 年公布了存在 SS7 信令存在漏洞,可能导致任意用户非法位置查询、短信窃取、通话窃听;如果信令网关解析信令有问题,外部攻击者可以直接中断关键核心网元。例如,5G 的 UPF 下沉到边缘园区后,由于 UPF 所处的物理环境不可控,若 UPF 被渗透,则存在通过UPF 的 N4 口攻击核心网的风险。

电信网络的管理面风险在三个平面中的风险是最高的。例如,欧盟将 5G 管理面管理和编排(MANO)风险列为最高等级。全球电信网络安全事件显示,电信网络被攻击的实际案例主要是通过攻击管理面实现的。虽然运营商在管理面部署了统一安全管理平台解决方案(4A)、堡垒机、安全运营系统(SOC)、多因素认证等安全防护措施,但是,在通信网安全防护检查中,经常会发现管理面安全域划分不合理、管控策略不严,安全防护措施不到位、远程接入 VPN 设备及 4A 系统存在漏洞等现象,导致管理面的系统容易被渗透。

电信网络的用户面传输用户通信数据,电信网元一般只转发用户面通信内容,不解析、不存储用户数据,在做好终端和互联网接口防护的情况下,安全风险相对可控。用户面主要存在的安全风险包括:用户面信息若未加密,在网络传输过程中可能被窃听;海量用户终端接入可能导致用户面流量分布式拒绝服务攻击(DDoS);用户面传输的内容可能存在恶意信息,例如恶意软件、电信诈骗信息等;电信网络设备用户面接口可能遭受来自互联网的攻击等。

3. 做好内外部接口的安全风险评估

在开展电信网络安全风险评估时,应从端到端的视角分析网络存在的外部接口和网元之间内部接口的风险,尤其是重点做好外部接口风险评估。以 5G 核心网为例,5G 核心网存在如下外部接口:与 UE 之间的 N1 接口,与基站之间的 N2 接口、与UPF 之间的 N4 接口、与互联网之间的 N6 接口等,还有漫游接口、能力开放接口、管理面接口等。每个接口连接不同的安全域,存在不同风险。根据3GPP 协议标准定义,在 5G 非独立组网(NSA)中,当用户漫游到其他网络时,该用户的鉴权、认证、位置登记,需要在漫游网络与归属网络之间传递。漫游边界接口用于运营商之间互联互通,需要经过公网传输。因此,这些漫游接口均为可访问的公网接口,而这些接口所使用的协议没有定义认证、加密、完整性保护机制。

4. 做好虚拟化/容器环境的安全风险评估

移动核心网已经云化,云化架构相比传统架构,引入了通用硬件,将网络功能运行在虚拟环境/容器环境中,为运营商带来低成本的网络和业务的快速部署。虚拟化使近端物理接触的攻击变得更加困难,并简化了攻击下的灾难隔离和灾难恢复。网络功能虚拟化(NFV)环境面临传统网络未遇到过的新的安全威胁,包括物理资源共享打破物理边界、虚拟化层大量采用开源和第三方软件引入大量开源漏洞和风险、分层多厂商集成导致安全定责与安全策略协同更加困难、传统安全静态配置策略无自动调整能力导致无法应对迁移扩容等场景。云化环境中网元可能面临的典型安全风险包括:通过虚拟网络窃听或篡改应用层通信内容,攻击虚拟存储,非法访问应用层的用户数据,篡改镜像,虚拟机(VM)之间攻击、通过网络功能虚拟化基础设施(NFVI)非法攻击 VM,导致业务不可用等。

5. 做好暴露面资产的安全风险评估

电信网络规模大,涉及的网元多,但是,哪些是互联网暴露面资产,应首先做好梳理。例如,5G网络中,5G 基站(gNB)、UPF、安全电子支付协议(SEPP)、应用功能(AF)、网络开放功能(NEF)等网元存在与非可信域设备之间的接口,应被视为暴露面资产。暴露面设备容易成为入侵网络的突破口,因此,需重点做好暴露面资产的风险评估和安全加固。


四、对运营商加强电信网络关键信息基础设施安全保护的建议

参考国际上通行的 IPDRR 方法,运营商应根据场景化安全风险,按照事前、事中、事后三个阶段,构建电信网络安全防护能力,实现网络高韧性、数据高安全性。

1. 构建电信网络资产、风险识别能力

建设电信网络资产风险管理系统,统一识别和管理电信网络所有的硬件、平台软件、虚拟 VNF网元、安全关键设备及软件版本,定期开展资产和风险扫描,实现资产和风险可视化。安全关键功能设备是实施网络监管和控制的关键网元,例如,MANO、虚拟化编排器、运维管理接入堡垒机、位于安全域边界的防火墙、活动目录(AD)域控服务器、运维 VPN 接入网关、审计和监控系统等。安全关键功能设备一旦被非法入侵,对电信网络的影响极大,因此,应做好对安全关键功能设备资产的识别和并加强技术管控。

2. 建立网络纵深安全防护体系

一是通过划分网络安全域,实现电信网络分层分域的纵深安全防护。可以将电信网络用户面、控制面的系统划分为非信任区、半信任区、信任区三大类安全区域;管理面的网络管理安全域(NMS),其安全信任等级是整个网络中最高的。互联网第三方应用属于非信任区;对外暴露的网元(如 5G 的 NEF、UPF)等放在半信任区,核心网控制类网元如接入和移动管理功能(AMF)等和存放用户认证鉴权网络数据的网元如归属签约用户服务器(HSS)、统一数据管理(UDM)等放在信任区进行保护,并对用户认证鉴权网络数据进行加密等特别的防护。二是加强电信网络对外边界安全防护,包括互联网边界、承载网边界,基于对边界的安全风险分析,构建不同的防护方案,部署防火墙、入侵防御系统(IPS)、抗DDoS 攻击、信令防护、全流量监测(NTA)等安全防护设备。三是采用防火墙、虚拟防火墙、IPS、虚拟数据中心(VDC)/虚拟私有网络(VPC)隔离,例如通过防火墙(Firewall)可限制大部分非法的网络访问,IPS 可以基于流量分析发现网络攻击行为并进行阻断,VDC 可以实现云内物理资源级别的隔离,VPC 可以实现虚拟化层级别的隔离。四是在同一个安全域内,采用虚拟局域网(VLAN)、微分段、VPC 隔离,实现网元访问权限最小化控制,防止同一安全域内的横向移动攻击。五是基于网元间通信矩阵白名单,在电信网络安全域边界、安全域内实现精细化的异常流量监控、访问控制等。

3. 构建全面威胁监测能力

在电信网络外部边界、安全域边界、安全域内部署网络层威胁感知能力,通过部署深度报文检测(DPI)类设备,基于网络流量分析发现网络攻击行为。基于设备商的网元内生安全检测能力,构建操作系统(OS)入侵、虚拟化逃逸、网元业务面异常检测、网元运维面异常检测等安全风险检测能力。基于流量监测、网元内生安全组件监测、采集电信网元日志分析等多种方式,构建全面威胁安全态势感知平台,及时发现各类安全威胁、安全事件和异常行为。

4. 加强电信网络管理面安全风险管控

管理面的风险最高,应重点防护。针对电信网络管理面的风险,应做好管理面网络隔离、运维终端的安全管控、管理员登录设备的多因素认证和权限控制、运维操作的安全审计等,防止越权访问,防止从管理面入侵电信网络,保护用户数据安全。

5. 构建智能化、自动化的安全事件响应和恢复能力

在网络级纵深安全防护体系基础上,建立安全运营管控平台,对边界防护、域间防护、访问控制列表(ACL)、微分段、VPC 等安全访问控制策略实施统一编排,基于流量、网元日志及网元内生组件上报的安全事件开展大数据分析,及时发现入侵行为,并能对攻击行为自动化响应。

(本文刊登于《中国信息安全》杂志2021年第11期)

C. 物联网行业专业名词,你知道哪个

物联网你听过吗?随之万物互连的定义明确提出,物联网愈来愈被大家所悉知,物联网别称IOT,可是绝大多数的人都只知物联网一词,但不知道IOT的含意,以便让大伙儿更强的掌握物联网制造行业,接下来就对物联网行业的专业名词给大伙儿归纳梳理了一下,仅供参考。

物联网行业十大专业名词,你知道哪几个?

1、IoT

物联网是新一代信息 科技 的关键构成。其英文名字是“The Internet of things”。从而,说白了,“物联网就是说物物相接的互联网技术”。这有双层含意:

第一,物联网的关键和基本依然是互联网技术,是在互联网技术基本上的拓宽和拓展的互联网;

第二,其局端拓宽和拓展来到一切物件与物件中间,开展信息内容互换和通讯。

因而,物联网的界定是根据 射频识别(RFID)、红外线感应器、卫星导航系统、激光器扫码器 等信息内容传感技术机器设备,按承诺的协议书,把一切物件与互联网技术相互连接,开展信息内容互换和通讯,以保持对物件的智能化系统鉴别、精准定位、追踪、监控器和管理方法的一种互联网。

2、APN

APN 指一种网络接入技术,是根据移动上网时务必配备的一个主要参数,它决策了设备上根据哪样连接方法来浏览互联网。针对移动用户而言,能够浏览的外界网络类型有许多,比如:Internet、WAP 网址、集团公司公司内部互联网、制造行业内部专用型互联网。而不一样的接入点能够浏览的范畴及其连接的方法是不一样的,互联网侧怎样了解设备上激话之后要浏览哪家网络进而分派哪家网段的 IP 呢,这还要靠 APN 来区别了,中亿物联表明 APN 决策了客户硬件设备上根据哪样连接方法来浏览哪些的网站。

3、BSS

业务流程支撑点系统软件(Business Support Systems)

主要运用于通讯行业,根据该对系统客户实行相对业务流程实际操作。它选用省管理中心/全国性管理中心二级系统架构图,二级系统软件紧密联系,相互搭建各大网站服务项目/各大网站经营的运营支撑工作能力。

4、OSS

运营支撑系统软件(Operations Support System)

OSS是一个综合性的业务流程经营和管理系统,另外都是真实结合了传统式IP数据业务与移动增值业务的综合性管理系统。中亿物联网表明OSS是通信运营商的一体化、信息内容共享资源的终端软件,它关键由网络安全管理、管理信息系统、收费、运营、帐务和顾客服务等一部分构成,系统软件间根据统一的信息内容系统总线有机化学融合在一起。

5、BOSS

业务流程运营支撑系统软件(Business and Operation Support System)

BOSS 是业务流程运营支撑系统软件(Business Operation Support System)的通称,公司的运营支撑服务平台,出示端到web端经营流程来适用营运商解决如顾客服务、批价、收费、清算及其催交等的日常工作。

它包括客户关系管理(CBOSS)、产品经营(PBOSS)、资源优化配置、顾客服务、渠道营销、收费、帐务、清算、合作方管理方法等多方面的作用。它对各种各样业务流程作用开展集中化、统一的整体规划和融合,是一体化得、信息内容资源充足共享资源的支撑点系统软件。

一般 常说的 BOSS 分成四个一部分:

收费及清算系统软件

运营与帐务系统软件

智能客服系统

信息处理系统

BOSS 从业务流程方面看来就是说一个架构,来承重业务管理系统、CRM系统软件、收费系统。保持统一架构中的竖向、横着管理方法。

业务流程经营终端软件应对顾客是统一的。应对业务流程营运商,它结合了业务流程支撑点系统软件(BSS)与运营支撑系统软件(OSS),是一个综合性的业务流程经营和管理方法支撑点服务平台,另外都是真实结合业务流程(不一样的营运商有不一样业务流程的结合,如传统式互联网接入业务流程、IP数据业务、内容出示业务流程与移动增值业务等)的综合性管理系统。

6、NE

网元 (network element)

即网络单元,包括硬件环境及运作其上的手机软件。一般 一个网络单元最少具备一块主控板,承担全部网络单元的管理方法和监控器。服务器手机软件运作在主控板上。

三大网元详细介绍:

物联网专业化支撑点系统软件连接的核心网分成三大块,各自是 HSS、SCP、PCRF。

HSS(Home Subscriber Server)所属签订客户服务

PCRF(Policy and Charging Rule Function)对策与收费标准作用

SCP(Service Control Point)业务流程基准点

7、网关ip(Gateway)

将2个应用不一样协议书的互联网段联接在一起的机器设备。它的作用就是对2个互联网段中的应用不一样传送协议书的信息开展互相的汉语翻译变换。

8、IMEI

国际性移动终端标志(International Mobile Equipment Identity)

标志每一台 GSM 和 UMTS 手机上的大数字,具备唯一性。该标志一般 坐落于充电电池正下方的手机上内部,还可以根据在手机上中键入字符串数组*#06#来查询该手机上的国际性移动终端标志。

9、IMSI

国际性手机用户标识码(International Mobile Subscriber Identity)

在 GSM 和 UMTS 互联网中用以唯一鉴别手机用户的一个号。这一号一般 被储放在 SIM 卡上,由手机上发给互联网。它也可用以获得储存在当地部位寄存器(HLR)中的手机用户的更多信息,或拷贝在本地拜会部位寄存器中。

为了避免根据无线网络插口对客户开展监听和追踪的 IMSI 是非常少被推送的,只是被做为尽量由一个任意转化成的 TMSI 替代推送。

10、M2M

设备与设备(machine-to-machine)

设备与设备是将信息从一台终端设备传输到另一台终端设备,也就是说设备与设备(Machine to Machine)的会话。M2M 管理系统中,重中之重保持三种方法的通讯:设备对设备,设备对移动手机(出示客户远程控制监控工作能力),移动手机对设备(出示客户远程操作工作能力)。

D. HSS 和 AHSS是什么意思

HSS:高强钢(high strength steel),AHSS先进高强度钢:(advanced high strength steel) ,是基于高强度钢(HSS)提出来的.

AHSS

先进高强度钢,国际钢铁协会( IISI) 先进高强钢应用指南第三版中将高强钢分为传统高强钢(Conventional HSS) 和先进高强钢(AHSS) 。传统高强钢、烘烤硬化(BH) 钢、高强度无间隙原子(HSS -IF) 钢和高强度低合金(HSLA) 钢;AHSS 主要包括双相(DP) 钢、相变诱导塑性(TRIP) 钢、马氏体(M) 钢、复相(CP) 钢、热成形(HF) 钢、孪晶诱导塑性(TWIP) 钢和淬火分离(QP)钢;AHSS的强度在500MPa到1500MPa之间,具有很好吸能性,在汽车轻量化和提高安全性方面起着非常重要的作用,已经广泛应用于汽车工业,和加强件如A/B/C柱、车门槛、前后保险杠、车门防撞梁、横梁、纵梁、座椅滑轨等零件; DP钢最早于1983年由瑞典SSAB钢板有限公司实现量产。

先进高强度钢,也称为高级高强度钢,其英文缩写为AHSS(Advanced High Strength Steel)。国际钢铁协会( IISI) 先进高强钢应用指南第三版中将高强钢分为传统高强钢(Conventional HSS) 和先进高强钢(AHSS) 。

传统高强钢主要包括碳锰钢(C -Mn)、烘烤硬化(BH) 钢、高强度无间隙原子(HSS -IF) 钢和高强度低合金(HSLA) 钢;AHSS 主要包括双相钢(DP)、相变诱导塑性(TRIP) 钢、马氏体(M) 钢、复相钢(CP)、热成形(HF) 钢和孪晶诱导塑性(TWIP) 钢;AHSS的强度在500MPa到1500MPa之间,具有很好吸能性,在汽车轻量化和提高安全性方面起着非常重要的作用,已经广泛应用于汽车工业,主要应用于汽车结构件、安全件和加强件如A/B/C柱、车门槛、前后保险杠、车门防撞梁、横梁、纵梁、座椅滑轨等零件; DP钢最早于1983年由瑞典SSAB钢板有限公司实现量产。

双相钢

双相钢组成是铁素体基体包含一个坚硬的第二相马氏体。通常强度随着第二相的体积分数的增加而增加。在某些情况下,热轧钢需要在边缘提高抗拉强度(典型的措施是通过空穴的扩张能力),这样热轧钢便需要具有了大量的重要的贝氏体结构。

在双相钢中,在实际冷却速度中形成的马氏体中的碳式钢的淬硬性增加。锰、铬、钼、钒、和镍元素单独添加或联合添加也能增加钢的淬硬性。碳、硅和磷也加强了作为铁素体溶质的马氏体的强度。

高强度钢

高强度及高延性钢的微观组织是在铁素体基体中还保留着残余奥氏体组织。除了体积分数最少为5%的残余奥氏体外,还存在着不同数额的马氏体和贝氏体等坚硬组织。

多相钢

具有代表性的多相钢需要很高的抗拉强度极限才能转变成钢。多相钢的组成是有细小的铁素体组织和体积分数较高的坚硬的相,并且细小的沉淀使其强度进一步加强。和双相钢和高强度、高延性钢一样,多相钢也包含了很多和它们相同的合金元素,但也经常有少量的铌、钛、和钒形成细小的、高强度的沉淀物。在抗拉强度值在800MPa或更高时,多相钢表现出了更高的屈服强度。多相钢的典型特征是具有高的成形性、很高的能量吸收和很高的残余变形能力。

马氏体钢

为了生成马氏体钢,在热轧或退火中存在的奥氏体在淬火和连续退火曲线中的冷却阶段全部转变成马氏体。该结构也会在成形后的热处理过程中形成。马氏体钢具有非常高的强度,抗拉强度极限达到了1700MPa。马氏体钢经常需要用等温回火来提高其韧性,这样便能在具有极高的强度的同时具有很好的成形性。

所有的先进高速钢的生产都要控制奥氏体相或奥氏体加铁素体相的冷却速度,可以在外围表面进行热磨削(如热轧产品),也可以在连续退火炉中局部冷却(连续退火或热浸涂产品)。马氏体钢是通过快速淬火致使大部分奥氏体转变成马氏体相而产生的。铁素体加马氏体双相钢的生产,是通过控制其冷却速度,使奥氏体相(见于热轧钢中)或铁素体+马氏体双相(见于连续退火和热浸涂钢中)在残余奥氏体快速冷却转变成马氏体之前,将其中一些奥氏体转变成铁素体。TRIP钢通常需要保持在中温等温的条件以产生贝氏体。较高的硅碳含量使TRIP钢在最后的微观结构含过多的残余奥氏体。多相钢还遵循一个类似的冷却方式,但这种情况之下,化学元素的调整会产生极少的残余奥氏体并形成细小的析出以加强马氏体和贝氏体相。

高速钢(HSS)是一种具有高硬度、高耐磨性和高耐热性的工具钢,又称高速工具钢或锋钢,俗称白钢。高速钢是美国的F.W.泰勒和M.怀特于1898年创制的。

高速钢的工艺性能好,强度和韧性配合好,因此主要用来制造复杂的薄刃和耐冲击的金属切削刀具,也可制造高温轴承和冷挤压模具等。除用熔炼方法生产的高速钢外,20世纪60年代以后又出现了粉末冶金高速钢,它的优点是避免了熔炼法生产所造成的碳化物偏析而引起机械性能降低和热处理变形。

安米集团北美公司推出新AHSS产品

安米集团北美公司推出了Fortiform®980 Extragal®新产品,扩展了其AHSS产品系列范围。该钢种专为汽车行业设计,用于解决液态金属脆化和最佳焊接强度等问题,这些问题对车辆在碰撞过程中受到影响的结构部件(包括前后轨)至关重要。此外,新钢种与传统AHSS相比,在减重高达20%的同时能够满足汽车日益严格的碰撞及安全要求。

安米集团印第安纳州研究中心首席研究工程师Hassan Ghassemi Armaki说道:“冷冲压用新型Fortiform®980 Extragal®系列AHSS产品性能在超越第二代AHSS产品的同时,拥有更高的强度和优异的成形性、延展性,为AHSS在车身工程中应用开拓了重要的新机遇。对于汽车生产商而言,这是一个至关重要的优势,因为它们正面临车辆进一步减重的压力,而车辆减重是提高燃油经济性战略的一部分。”

目前新钢种仅提供给北美市场,并很快将在欧洲推出。

汽车用先进高强钢(AHSS)的“代沟”

近年来,常规钢种的利润越来越微薄,而汽车用先进高强钢作为有一定技术门槛,且符合“高强减薄”环保理念的产品,发展趋势和利润都相当不错,也是大家比较关心的一类高附加值产品。

汽车用先进高强钢每一代每一款钢种都有其特点,常规性能看上去相近但不能混用。本文虽然会有些枯燥,但是花点时间学习,了解他们的特性,对于提高工作效率还是非常有帮助的。

汽车用先进高强钢目前的发展状况

近几十年来,汽车用先进高强度钢(AHSS-Advanced High Strength Steel)是材料的研发重点,目前世界钢协根据研发历史及其特点,将之分为三代。

第一代以铁素体为基的AHSS钢的强塑积为15 GPa%以下;

第二代以奥氏体为基的AHSS钢的强塑积为50 GPa%以上,其合金含量高和生产工艺控制困难导致成本高,因此正研发第三代多相AHSS钢,通过多相、亚稳和多尺度的组织精细调控,其强塑积约为20 -40GPa%。

第三代AHSS钢以提高第一代AHSS钢强度、塑性和降低第二代AHSS合金含量、生产成本两方面进行研发。现有及已发中的AHSS钢种大致分布情况如下图。

基于延伸率--抗拉强度关系的现有及开发中的

AHSS“香蕉图”

注:强塑积=抗拉强度 × 延伸率(单位为GPa%),用于简单评价强度和塑形的平衡关系。

三代汽车用先进高强钢的区别和特点

第一代

主要包括双相( DP)钢、多相( CP)钢和相变诱导塑性( TRIP)钢,铁素体贝氏体钢(FB/SF),马氏体钢(MS/PHS)等。

第一代合金含量低,主要是以铁素体为主的多相显微组织。双相钢是目前使用最多的一种先进高强钢,除了强度高、成型性好外,还具有易于焊接加工的优点。TRIP钢兼具良好的强度和延伸性能,其残余奥氏体相通过应变诱导相变转化成马氏体相,从而提高了应变硬化指数。第一代AHSS的屈服强度通常不小于280/300 MPa,抗拉强度不小于590/600 MPa,其成形性能优于同等强度级别的HSLA。

第二代

包括奥氏体孪晶诱导塑性( TWIP) 钢、诱导塑性轻钢(L-IP)和剪切带强化(SIP)钢。第二代先进高强钢机械虽然有很高的强度和极好的塑性,但是由于其含有大量的Mn元素,成本很高,而且具有较低的屈服强度(约280MPa),对于结构件是不利的。此外,这些合金的加工难度非常大,而且TWIP钢还易于产生延迟裂纹。第二代AHSS的抗拉强度通常在1000 MPa ,断后伸长率通常为50–60 %。

第三代

第三代的特征是微观组织为马氏体(贝氏体)和奥氏体的混合组织。目前认为,这类钢中包括TBF钢(TRIP Aided Bainitic Ferrite steels),中锰钢(medium Mn-Trip),QP钢(Quenching-Partitioning Steel)等;这类钢主要考虑了对钢的使用性能要求(高强度,高延性),同时也兼顾了经济性(Affordable)。

TBF钢它的组织特征是无碳化物板条状贝氏体基体及较大体积分数的残余奥氏体,与同等强度级别的第一代AHSS相比,它的成形性能更好,并且具有良好的翻边扩孔性能,并且,通过贝氏体铁素体晶粒的进一步细化,其强度有望进一步提高,通过相变诱导塑性效应,提高材料的延展性能。这类钢已经实现了商业化生产。

中锰钢,其Mn含量约为4-12%,它的强度和塑性均符合第三代AHSS的特征,它的残余奥氏体组织的体积分数较大。目前暂未实现批量生产,但在宝钢已经完成了试制。这类钢的主要合金元素为Mn,并添加了一定比例的Si/Al和其他微合金元素,其C含量较低。通过不同的热处理工艺可获得不同的显微组织结构,可获得的钢的强度范围较大。

QP钢(淬火延性钢),的组织特征是马氏体与残余奥氏体的混合组织,这种特征的显微组织是通过Q&P工艺获得的。Q&P热处理工艺获得的钢,不仅仅具有高的抗拉强度及断后伸长率的乘积,并且与同等强度级别的其他类型显微组织的钢相比(DP, TRIP, Q&T),具有更高的屈强比(YS/TS ratio)和更高的扩孔性能,宝钢是全球首个实现QP钢商业化生产的大型钢铁联合企业。

根据网络资料"常州精密钢管博客网"整理

E. 计算机网络论文

摘要:无线局域网的覆盖范围为几百米,在这样一个范围内,无线设备可以自由移动,其适合于低移动性的应用环境。而且无线局域网的载频为公用频段,无需另外付费,因而使用无线局域网的成本很低。无线局域网带宽更会发展到上百兆的带宽,能够满足绝大多数用户的带宽要求。基于以上原因,无线局域网在市场赢得热烈的反响,并迅速发展成为一种重要的无线接入互联网的技术。但由于无线局域网应用具有很大的开放性,数据传播范围很难控制,因此无线局域网将面临着更严峻的安个问题。本文在阐述无线局域网安全发展概况的基础上,分析了无线局域网的安全必要性,并从不同方面总结了无线局域网遇到的安全风险,同时重点分析了IEEE802. 11 b标准的安全性、影响因素及其解决方案,最后对无线局域网的安全技术发展趋势进行了展望。

关键词:无线局域网;标准;安全;趋势

前言 无线局域网本质上是一种网络互连技术。无线局域网使用无线电波代替双绞线、同轴电缆等设备,省去了布线的麻烦,组网灵活。无线局域网(WLAN)是计算机网络与无线通信技术相结合的产物。它既可满足各类便携机的入网要求,也可实现计算机局域网远端接入、图文传真、电子邮件等功能。无线局域网技术作为一种网络接入手段,能迅速地应用于需要在移动中联网和在网间漫游的场合,并在不易架设有线的地力和远冲离的数据处理节点提供强大的网络支持。因此,WLAN已在军队、石化、医护管理、工厂车间、库存控制、展览和会议、金融服务、旅游服务、移动办公系统等行业中得到了应用,受到了广泛的青睐,已成为无线通信与Internet技术相结合的新兴发展力向之一。WLAN的最大优点就是实现了网络互连的可移动性,它能大幅提高用户访问信息的及时性和有效性,还可以克服线缆限制引起的不便性。但由于无线局域网应用具有很大的开放性,数据传播范围很难控制,因此无线局域网将面临着更严峻的安全问题。
1. 无线局域网安全发展概况
无线局域网802.11b公布之后,迅速成为事实标准。遗憾的是,从它的诞生开始,其安全协议WEP就受到人们的质疑。美国加州大学伯克利分校的Borisov,Goldberg和Wagner最早发表论文指出了WEP协议中存在的设计失误,接下来信息安全研究人员发表了大量论文详细讨论了WEP协议中的安全缺陷,并与工程技术人员协作,在实验中破译了经WEP协议加密的无线传输数据。现在,能够截获无线传输数据的硬件设备己经能够在市场上买到,能够对所截获数据进行解密的黑客软件也已经能够在因特网上下载。WEP不安全己经成一个广为人知的事情,人们期待WEP在安全性方面有质的变化,新的增强的无线局域网安全标准应运而生[1]。
我国从2001年开始着手制定无线局域网安全标准,经过西安电子科技大学、西安邮电学院、西电捷通无线网络通信有限公司等院校和企业的联合攻关,历时两年多制定了无线认证和保密基础设施WAPI,并成为国家标准,于2003年12月执行。WAPI使用公钥技术,在可信第三方存在的条件下,由其验证移动终端和接入点是否持有合法的证书,以期完成双向认证、接入控制、会话密钥生成等目标,达到安全通信的目的。WAPI在基本结构上由移动终端、接入点和认证服务单元三部分组成,类似于802.11工作组制定的安全草案中的基本认证结构。同时我国的密码算法一般是不公开的,WAPI标准虽然是公开发布的,然而对其安全性的讨论在学术界和工程界目前还没有展开[2]。
增强的安全草案也是历经两年多时间定下了基本的安全框架。其间每个月至少召开一次会议,会议的文档可以从互联网上下载,从中可以看到一些有趣的现象,例如AES-OCB算法,开始工作组决定使用该算法作为无线局域网未来的安全算法,一年后提议另外一种算法CCMP作为候选,AES-OSB作为缺省,半年后又提议CCMP作为缺省,AES-OCB作为候选,又过了几个月,干脆把AES-OCB算法完全删除,只使用CCMP算法作为缺省的未来无线局域网的算法。其它的例子还有很多。从这样的发展过程中,我们能够更加清楚地认识到无线局域网安全标准的方方面面,有利于无线局域网安全的研究[3][4]。
2.无线局域网的安全必要性
WLAN在为用户带来巨大便利的同时,也存在着许多安全上的问题。由于WLAN 通过无线电波在空中传输数据,不能采用类似有线网络那样的通过保护通信线路的方式来保护通信安全,所以在数据发射机覆盖区域内的几乎任何一个WLAN用户都能接触到这些数据,要将WLAN发射的数据仅仅传送给一名目标接收者是不可能的。而防火墙对通过无线电波进行的网络通讯起不了作用,任何人在视距范围之内都可以截获和插入数据。因此,虽然无线网络和WLAN的应用扩展了网络用户的自由,它安装时间短,增加用户或更改网络结构时灵活、经济,可提供无线覆盖范围内的全功能漫游服务。然而,这种自由也同时带来了新的挑战,这些挑战其中就包括安全性。WLAN 必须考虑的安全要素有三个:信息保密、身份验证和访问控制。如果这三个要素都没有问题了,就不仅能保护传输中的信息免受危害,还能保护网络和移动设备免受危害。难就难在如何使用一个简单易用的解决方案,同时获得这三个安全要素。国外一些最新的技术研究报告指出,针对目前应用最广泛的802.11bWLAN 标准的攻击和窃听事件正越来越频繁[5],故对WLAN安全性研究,特别是广泛使用的IEEE802.11WLAN的安全性研究,发现其可能存在的安全缺陷,研究相应的改进措施,提出新的改进方案,对 WLAN 技术的使用、研究和发展都有着深远的影响。
同有线网络相比,无线局域网无线传输的天然特性使得其物理安全脆弱得多,所以首先要加强这一方面的安全性。
无线局域网中的设备在实际通信时是逐跳的方式,要么是用户设备发数据给接入设备,饭由接入设备转发,要么是两台用户设备直接通信,每一种通信方式都可以用链路层加密的方法来实现至少与有线连接同等的安全性。无线信号可能被侦听,但是,如果把无线信号承载的数据变成密文,并且,如果加密强度够高的话,侦听者获得有用数据的可能性很小。另外,无线信号可能被修改或者伪造,但是,如果对无线信号承载的数据增加一部分由该数据和用户掌握的某种秘密生成的冗余数据,以使得接收方可以检测到数据是杏被更改,那么,对于无线信号的更改将会徒劳无功。而秘密的独有性也将使得伪造数据被误认为是合法数据的可能性极小。
这样,通过数据加密和数据完整性校验就可以为无线局域网提供一个类似有线网的物理安全的保护。对于无线局域网中的主机,面临病毒威胁时,可以用最先进的防毒措施和最新的杀毒工具来给系统增加安全外壳,比如安装硬件形式的病毒卡预防病毒,或者安装软件用来时实检测系统异常。PC机和笔记本电脑等设备己经和病毒进行了若千年的对抗,接下来的无线设备如何与病毒对抗还是一个待开发领域。
对于DOS攻击或者DDOS攻击,可以增加一个网关,使用数据包过滤或其它路由设置,将恶意数据拦截在网络外部;通过对外部网络隐藏接入设备的IP地址,可以减小风险。对于内部的恶意用户,则要通过审计分析,网络安全检测等手段找出恶意用户,并辅以其它管理手段来杜绝来自内部的攻击。硬件丢失的威胁要求必须能通过某种秘密或者生物特征等方式来绑定硬件设备和用户,并且对于用户的认证也必须基于用户的身份而不是硬件来完成。例如,用MAC地址来认证用户是不适当的[5]。
除了以上的可能需求之外,根据不同的使用者,还会有不同的安全需求,对于安全性要求很高的用户,可能对于传输的数据要求有不可抵赖性,对于进出无线局域网的数据要求有防泄密措施,要求无线局域网瘫痪后能够迅速恢复等等。所以,无线局域网的安全系统不可能提供所有的安全保证,只能结合用户的具体需求,结合其它的安全系统来一起提供安全服务,构建安全的网络。
当考虑与其它安全系统的合作时,无线局域网的安全将限于提供数据的机密性服务,数据的完整性服务,提供身份识别框架和接入控制框架,完成用户的认证授权,信息的传输安全等安全业务。对于防病毒,防泄密,数据传输的不可抵赖,降低DoS攻击的风险等都将在具体的网络配置中与其它安全系统合作来实现。
3.无线局域网安全风险
安全风险是指无线局域网中的资源面临的威胁。无线局域网的资源,包括了在无线信道上传输的数据和无线局域网中的主机。
3.1 无线信道上传输的数据所面临的威胁
由于无线电波可以绕过障碍物向外传播,因此,无线局域网中的信号是可以在一定覆盖范围内接听到而不被察觉的。这如用收音机收听广播的情况一样,人们在电台发射塔的覆盖范围内总可以用收音机收听广播,如果收音机的灵敏度高一些,就可以收听到远一些的发射台发出的信号。当然,无线局域网的无线信号的接收并不像收音机那么简单,但只要有相应的设备,总是可以接收到无线局域网的信号,并可以按照信号的封装格式打开数据包,读取数据的内容[6]。
另外,只要按照无线局域网规定的格式封装数据包,把数据放到网络上发送时也可以被其它的设备读取,并且,如果使用一些信号截获技术,还可以把某个数据包拦截、修改,然后重新发送,而数据包的接收者并不能察觉。
因此,无线信道上传输的数据可能会被侦听、修改、伪造,对无线网络的正常通信产生了极大的干扰,并有可能造成经济损失。
3.2 无线局域网中主机面临的威胁
无线局域网是用无线技术把多台主机联系在一起构成的网络。对于主机的攻击可能会以病毒的形式出现,除了目前有线网络上流行的病毒之外,还可能会出现专门针对无线局域网移动设备,比如手机或者PDA的无线病毒。当无线局域网与无线广域网或者有线的国际互联网连接之后,无线病毒的威胁可能会加剧。
对于无线局域网中的接入设备,可能会遭受来自外部网或者内部网的拒绝服务攻击。当无线局域网和外部网接通后,如果把IP地址直接暴露给外部网,那么针对该IP的Dog或者DDoS会使得接入设备无法完成正常服务,造成网络瘫痪。当某个恶意用户接入网络后,通过持续的发送垃圾数据或者利用IP层协议的一些漏洞会造成接入设备工作缓慢或者因资源耗尽而崩溃,造成系统混乱。无线局域网中的用户设备具有一定的可移动性和通常比较高的价值,这造成的一个负面影响是用户设备容易丢失。硬件设备的丢失会使得基于硬件的身份识别失效,同时硬件设备中的所有数据都可能会泄漏。
这样,无线局域网中主机的操作系统面临着病毒的挑战,接入设备面临着拒绝服务攻击的威胁,用户设备则要考虑丢失的后果。
4.无线局域网安全性
无线局域网与有线局域网紧密地结合在一起,并且己经成为市场的主流产品。在无线局域网上,数据传输是通过无线电波在空中广播的,因此在发射机覆盖范围内数据可以被任何无线局域网终端接收。安装一套无线局域网就好象在任何地方都放置了以太网接口。因此,无线局域网的用户主要关心的是网络的安全性,主要包括接入控制和加密两个方面。除非无线局域网能够提供等同于有线局域网的安全性和管理能力,否则人们还是对使用无线局域网存在顾虑。
4.1 IEEE802. 11 b标准的安全性
IEEE 802.11b标准定义了两种方法实现无线局域网的接入控制和加密:系统ID(SSID)和有线对等加密(WEP)[7][8]。
4.1.1认证
当一个站点与另一个站点建立网络连接之前,必须首先通过认证。执行认证的站点发送一个管理认证帧到一个相应的站点。IEEE 802.11b标准详细定义了两种认证服务:一开放系统认证(Open System Authentication):是802.11b默认的认证方式。这种认证方式非常简单,分为两步:首先,想认证另一站点的站点发送一个含有发送站点身份的认证管理帧;然后,接收站发回一个提醒它是否识别认证站点身份的帧。一共享密钥认证(Shared Key Authentication ):这种认证先假定每个站点通过一个独立于802.11网络的安全信道,已经接收到一个秘密共享密钥,然后这些站点通过共享密钥的加密认证,加密算法是有线等价加密(WEP )。
4. 1 .2 WEP
IEEE 802.11b规定了一个可选择的加密称为有线对等加密,即WEP。WEP提供一种无线局域网数据流的安全方法。WEP是一种对称加密,加密和解密的密钥及算法相同。WEP的目标是:接入控制:防止未授权用户接入网络,他们没有正确的WEP密钥。
加密:通过加密和只允许有正确WEP密钥的用户解密来保护数据流。
IEEE 802.11b标准提供了两种用于无线局域网的WEP加密方案。第一种方案可提供四个缺省密钥以供所有的终端共享一包括一个子系统内的所有接入点和客户适配器。当用户得到缺省密钥以后,就可以与子系统内所有用户安全地通信。缺省密钥存在的问题是当它被广泛分配时可能会危及安全。第二种方案中是在每一个客户适配器建立一个与其它用户联系的密钥表。该方案比第一种方案更加安全,但随着终端数量的增加给每一个终端分配密钥很困难。
4.2 影响安全的因素[9][10]
4. 2. 1硬件设备
在现有的WLAN产品中,常用的加密方法是给用户静态分配一个密钥,该密钥或者存储在磁盘上或者存储在无线局域网客户适配器的存储器上。这样,拥有客户适配器就有了MAC地址和WEP密钥并可用它接入到接入点。如果多个用户共享一个客户适配器,这些用户有效地共享MAC地址和WEP密钥。
当一个客户适配器丢失或被窃的时候,合法用户没有MAC地址和WEP密钥不能接入,但非法用户可以。网络管理系统不可能检测到这种问题,因此用户必须立即通知网络管理员。接到通知后,网络管理员必须改变接入到MAC地址的安全表和WEP密钥,并给与丢失或被窃的客户适配器使用相同密钥的客户适配器重新编码静态加密密钥。客户端越多,重新编码WEP密钥的数量越大。
4.2.2虚假接入点
IEEE802. 1 1b共享密钥认证表采用单向认证,而不是互相认证。接入点鉴别用户,但用户不能鉴别接入点。如果一个虚假接入点放在无线局域网内,它可以通过劫持合法用户的客户适配器进行拒绝服务或攻击。
因此在用户和认证服务器之间进行相互认证是需要的,每一方在合理的时间内证明自己是合法的。因为用户和认证服务器是通过接入点进行通信的,接入点必须支持相互认证。相互认证使检测和隔离虚假接入点成为可能。
4.2.3其它安全问题
标准WEP支持对每一组加密但不支持对每一组认证。从响应和传送的数据包中一个黑客可以重建一个数据流,组成欺骗性数据包。减轻这种安全威胁的方法是经常更换WEP密钥。通过监测工EEE802. 11 b控制信道和数据信道,黑客可以得到如下信息:客户端和接入点MAC地址,内部主机MAC地址,上网时间。黑客可以利用这些信息研究提供给用户或设备的详细资料。为减少这种黑客活动,一个终端应该使用每一个时期的WEP密钥。
4.3 完整的安全解决方案
无线局域网完整的安全方案以IEEE802.11b比为基础,是一个标准的开放式的安全方案,它能为用户提供最强的安全保障,确保从控制中心进行有效的集中管理。它的核心部分是:
扩展认证协议(Extensible Authentication Protocol,EAP),是远程认证拨入用户服务(RADIUS)的扩展。可以使无线客户适配器与RADIUS服务器通信。
当无线局域网执行安全保密方案时,在一个BSS范围内的站点只有通过认证以后才能与接入点结合。当站点在网络登录对话框或类似的东西内输入用户名和密码时,客户端和RADIUS服务器(或其它认证服务器)进行双向认证,客户通过提供用户名和密码来认证。然后RADIUS服务器和用户服务器确定客户端在当前登录期内使用的WEP密钥。所有的敏感信息,如密码,都要加密使免于攻击。
这种方案认证的过程是:一个站点要与一个接入点连接。除非站点成功登录到网络,否则接入点将禁止站点使用网络资源。用户在网络登录对话框和类似的结构中输入用户名和密码。用IEEE802. lx协议,站点和RADIUS服务器在有线局域网上通过接入点进行双向认证。可以使用几个认证方法中的一个。
相互认证成功完成后,RADIUS服务器和用户确定一个WEP密钥来区分用户并提供给用户适当等级的网络接入。以此给每一个用户提供与有线交换几乎相同的安全性。用户加载这个密钥并在该登录期内使用。
RADIUS服务器发送给用户的WEP密钥,称为时期密钥。接入点用时期密钥加密它的广播密钥并把加密密钥发送给用户,用户用时期密钥来解密。用户和接入点激活WEP,在这时期剩余的时间内用时期密钥和广播密钥通信。
网络安全性指的是防止信息和资源的丢失、破坏和不适当的使用。无论有线络还是无线网络都必须防止物理上的损害、窃听、非法接入和各种内部(合法用户)的攻击。
无线网络传播数据所覆盖的区域可能会超出一个组织物理上控制的区域,这样就存在电子破坏(或干扰)的可能性。无线网络具有各种内在的安全机制,其代码清理和模式跳跃是随机的。在整个传输过程中,频率波段和调制不断变化,计时和解码采用不规则技术。
正是可选择的加密运算法则和IEEE 802.11的规定要求无线网络至少要和有线网络(不使用加密技术)一样安全。其中,认证提供接入控制,减少网络的非法使用,加密则可以减少破坏和窃听。目前,在基本的WEP安全机制之外,更多的安全机制正在出现和发展之中[12]。
5.无线局域网安全技术的发展趋势
目前无线局域网的发展势头十分强劲,但是起真正的应用前景还不是十分的明朗。主要表现在:一是真正的安全保障;二个是将来的技术发展方向;三是WLAN有什么比较好的应用模式;四是WLAN的终端除PCMCIA卡、PDA有没有其他更好的形式;五是WLAN的市场规模。看来无线局域网真正的腾飞并非一己之事[13]。
无线局域网同样需要与其他已经成熟的网络进行互动,达到互利互惠的目的。欧洲是GSM网的天下,而WLAN的崛起使得他们开始考虑WLAN和3G的互通,两者之间的优势互补性必将使得WLAN与广域网的融合迅速发展。现在国内中兴通讯己经实现了WLAN和CI}IVIA系统的互通,而对于使用中兴设备的WLAN与GSM/GPRS系统的互通也提出了解决方案,这条路必定越走越宽。
互通中的安全问题也必然首当其冲,IEEE的无线局域网工作组己经决定将EAP-SIIVI纳入无线局域网安全标准系列里面,并且与3G互通的认证标准EAP-AID也成为讨论的焦点。
无线网络的互通,现在是一个趋势。802.11工作组新成立了WIG(Wireless lnterworking Grouq),该工作组的目的在于使现存的符合ETSI,IEEE,MMAC所制订的标准的无线域网之间实现互通。另外3GPP也给出了无线局域网和3G互通的两个草案,定义了互通的基本需求,基本模型和基本框架。还有就是爱立信公司的一份文档给出了在现有的网络基础上,实现无线局域网和G1VIS/GPRS的互通。
不同类型无线局域网互通标准的制定,使得用户可以使用同一设备接入无线局域网。3G和无线局域网的互通者可以使用户在一个运营商那里注册,就可以在各地接入。当然,用户享用上述方便的同时,必然会使运营商或制造商获得利润,而利润的驱动,则是这个互通风潮的根本动力。为了达到互通的安全,有以下需求:支持传统的无线局域网设备,对用户端设备,比如客户端软件,影响要最小,对经营者管理和维护客户端SW的要求要尽量少,应该支持现存的UICC卡,不应该要求该卡有任何改动,敏感数据,比如存在UICC卡中的长期密钥不能传输。对于UICC卡的认证接口应该是基于该密钥的Challenge-, Response模式。用户对无线局域网接入的安全级别应该和3GPP接入一样,应该支持双向认证,所选的认证方案应该顾及到授权服务,应该支持无线局域网接入NW的密钥分配方法,无线局域网与3GPP互通所选择的认证机制至少要提供3 GPP系统认证的安全级别,无线局域网的重连接不应该危及3GPP系统重连接的安全,所选择的无线局域网认证机制应该支持会话密钥素材的协商,所选择的无线局域网密钥协商和密钥分配机制应该能防止中间人攻击。也就是说中间人不能得到会话密钥素材,无线局域网技术应当保证无线局域网UE和无线局域网AN的特定的认证后建立的连接可以使用生成的密钥素材来保证完整性。所有的用于用户和网络进行认证的长期的安全要素应该可以在一张UICC卡中存下[14]。
对于非漫游情况的互通时,这种情况是指当用户接入的热点地区是在3GPP的归属网络范围内。简单地说,就是用户在运营商那里注册,然后在该运营商的本地网络范围内的热点地区接入时的一种情况。无线局域网与3G网络安全单元功能如下:UE(用户设备)、3G-AAA(移动网络的认证、授权和计帐服务器)、HSS(归属业务服务器)、CG/CCF(支付网关/支付采集功能)、OCS(在线计帐系统)。
对于漫游的互通情况时,3G网络是个全域性网络借助3G网络的全域性也可以实现无线局域网的漫游。在漫游情况下,一种常用的方法是将归属网络和访问网络分开,归属网络AAA服务作为认证的代理找到用户所注册的归属网络。
在无线局域网与3G互通中有如下认证要求:该认证流程从用户设备到无线局域网连接开始。使用EAP方法,顺次封装基于USIM的用户ID,AKA-Challenge消息。具体的认证在用户设备和3GPAAA服务器之间展开。走的是AKA过程,有一点不同在于在认证服务器要检查用户是否有接入无线局域网的权限。
上述互通方案要求客户端有能够接入无线局域网的网卡,同时还要实现USIM或者SIM的功能。服务网络要求修改用户权限表,增加对于无线局域网的接入权限的判断。
无线局域网的崛起使得人们开始考虑无线局域网和3G的互通,两者之间的优势互补性必将使得无线局域网与广域网的融合迅速发展。现在国内中兴通讯已经实现了无线局域网和CDMA系统的互通,而对于使用中兴设备的无线局域网与GSM/GPRS系统的互通也提出了解决方案,这条路必定越走越宽。
参考文献:
[1] 郭峰,曾兴雯,刘乃安,《无线局域网》,电子工业出版杜,1997
[2] 冯锡生,朱荣,《无线数据通信》1997
[3] 你震亚,《现代计算机网络教程》,电子工业出版社,1999
[4] 刘元安,《宽带无线接入和无线局域网》,北京邮电大学出版社,2000
[5] 吴伟陵,《移动通信中的关键技术》,北京邮电大学出版社,2000
[6] 张公忠,陈锦章,《当代组网技术》,清华大学出版社,2000
[7] 牛伟,郭世泽,吴志军等,《无线局域网》,人民邮电出版社,2003
[8] Jeffrey Wheat,《无线网络设计》,莫蓉蓉等译,机械工业出版社,2002
[9] Gil Held,《构建无线局域网》,沈金龙等泽,人民邮电出版社,2002
[10] Christian Barnes等,《无线网络安全防护》,林生等译,机械工业出版社.2003
[11] Juha Heiskala等,《OFDM无线局域网》,畅晓春等译,电子工业出版社,2003
[12] Eric Ouellet等,《构建Cisco无线局域网》,张颖译,科学出版社,2003
参考下 需要原创的找我说明

F. 无线VPDN业务产品有哪些优势和特点

(1)可移动、覆盖广,用户可以在移动的环境下进行无线数据传输,用户在高速移动中也能确保持续连接,真正地满足用户移动办公的需求。只要有中国电信CDMA1X/EVDO、LTE/eHRPD、NSA-NR信号覆盖的地方,用户就能使用无线VPDN业务。(2)高安全性,无线VPDN业务具有五层安全保障:第一级安全保证:CDMA网络本身的安全性(2G、3G环境下具备);第二级安全保证:无线宽带接入AAA认证(4G、5G(NSA)下为HSS认证);第三级安全保证:网络和客户网络之间的L2TP、GRE隧道;第四级安全保证:客户网络侧的安全防火墙;第五级安全保证:LNSAAA鉴权认证。(3)高速率CDMA1X/EVDO、LTE/eHRPD、NSA-NR无线数据网络能够为移动用户提供高速的数据业务,EVDO数据传输速率最快可达到3.1Mbit/s,LTE网络数据传输速率最快可达到150Mbit/s,NSA-NR网络数据传输速率最高可达到10?Gbit/s。(4)适用范围广终端用户通过无线VPDN业务接入到客户网络,对各类应用均可透明传送。无线VPDN业务适用任何支持CDMA1X/EVDO、LTE/eHRPD、NSA-NR无线上网功能、可手工配置或安装专用客户端的终端,包括智能终端、具有CDMA1X/EVDO、LTE/eHRPD、NSA-NR接入功能的网络设备和工控设备等。了解更多服务优惠点击下方的“官方网址”客服217为你解答。

G. 如何防止网站被黑客攻击

防止黑客攻击网站方法:
1、设置安全的密码(包括会员密码、ftp密码、邮箱密码、数据库密码、后台管理密码等)原则如下:比较安全的密码首先必须是8位长度,其次必须包括大小写、数字字母,如果有特殊控制符最好,最后就是不要太常见。比如说:d9c&v6q0这样的密码就是相对比较安全的,如果再坚持每隔几个月更换一次密码,那就更安全了。另外,还要注意最好及时清空自己的临时文件,上网拨号的时候不选择“保存密码”,在浏览网页输入密码的时候不让浏览器记住自己的密码等。
2、尽量不要使用无组件上传,很容易被黑客利用上传木马,对网站进行破坏。动网论坛建议升级最新版本,老期版本存在漏洞。

3、后台管理入口添加验证码,避免黑客通过程序方式暴力破解。

4、access数据库后缀不要用.mdb,建议用.asp/.asa,避免被黑客下载;数据库名称建议使用#开头,存放的目录名称建议复杂一些,避免黑客猜测到。

H. HSS 是什么意思

HSS具有多种含义。可以表示为HSS服务器、工业术语高速钢、总降压变电所或安全软件等。

  1. 归属签约用户服务器(Home Subscriber Server,HSS)是3GPP在R5引入IMS时提出的概念,其功能与HLR类似但更加强大,支持更多接口,可以处理更多的用户信息。

  2. HSS是英文High speed steels的缩写,相应的中文名是高速钢,高速钢是制造刀具的一种常用材料。

  3. Hot Spot Shield软件(Hotspot Shield Launch)是免费的安全软件,可以让您在公共无线网络热点,家庭或工作场所安全的连接互联网。它的目的是提供信息安全和保护你的隐私,当你从任何地点登入互联网。

  4. Hysteria Savant Syndrome的缩写,出自赤松中学所作轻小说《绯弹的亚里亚》。

I. hotspot+shield+怎么支付

摘要 您好,很高兴为您解答。Hot Spot Shield(HSS)是一款免费的安全软件,可以让用户在公共无线网络热点,家庭或工作场所安全的连接互联网。它的目的是提供信息安全和保护用户的隐私,让用户从任何地点登入互联网。

J. IMS的问题分析

IP多媒体子系统(IMS)是3GPP在R5规范中提出的,旨在建立一个与接入无关、基于开放的SIP/IP协议及支持多种多媒体业务类型的平台来提供丰富的业务。它将蜂窝移动通信网络技术、传统固定网络技术和互联网技术有机结合起来,为未来的基于全IP网络多媒体应用提供了一个通用的业务智能平台,也为未来网络发展过程中的网络融合提供了技术基础。IMS的诸多特点使得其一经提出就成为业界的研究热点,是业界普遍认同的解决未来网络融合的理想方案和发展方向,但对于IMS将来如何提供统一的业务平台实现全业务运营,IMS的标准化及安全等问题仍需要进一步的研究和探讨。
1、IMS存在的安全问题分析
传统的电信网络采用独立的信令网来完成呼叫的建立、路由和控制等过程,信令网的安全能够保证网络的安全。而且传输采用时分复用(TDM)的专线,用户之间采用面向连接的通道进行通信,避免了来自其他终端用户的各种窃听和攻击。
而IMS网络与互联网相连接,基于IP协议和开放的网络架构可以将语音、数据、多媒体等多种不同业务,通过采用多种不同的接入方式来共享业务平台,增加了网络的灵活性和终端之间的互通性,不同的运营商可以有效快速地开展和提供各种业务。由于IMS是建立在IP基础上,使得IMS的安全性要求比传统运营商在独立网络上运营要高的多,不管是由移动接入还是固定接入,IMS的安全问题都不容忽视。
IMS的安全威胁主要来自于几个方面:未经授权地访问敏感数据以破坏机密性;未经授权地篡改敏感数据以破坏完整性;干扰或滥用网络业务导致拒绝服务或降低系统可用性;用户或网络否认已完成的操作;未经授权地接入业务等。主要涉及到IMS的接入安全(3GPP TS33.203),包括用户和网络认证及保护IMS终端和网络间的业务;以及IMS的网络安全(3GPP TS33.210),处理属于同一运营商或不同运营商网络节点之间的业务保护。除此之外,还对用户终端设备和通用集成电路卡/IP多媒体业务身份识别模块(UICC/ISIM)安全构成威胁。
2、IMS安全体系
IMS系统安全的主要应对措施是IP安全协议(IPSec),通过IPSec提供了接入安全保护,使用IPSec来完成网络域内部的实体和网络域之间的安全保护。3GPP IMS实质上是叠加在原有核心网分组域上的网络,对PS域没有太大的依赖性,在PS域中,业务的提供需要移动设备和移动网络之间建立一个安全联盟(SA)后才能完成。对于IMS系统,多媒体用户也需要与IMS网络之间先建立一个独立的SA之后才能接入多媒体业务。
3GPP终端的核心是通用集成电路卡(UICC),它包含多个逻辑应用,主要有用户识别模块(SIM)、UMTS用户业务识别模块(USIM)和ISIM。ISIM中包含了IMS系统用户终端在系统中进行操作的一系列参数(如身份识别、用户授权和终端设置数据等),而且存储了共享密钥和相应的AKA(Authentication and Key Agreement)算法。其中,保存在UICC上的用户侧的IMS认证密钥和认证功能可以独立于PS域的认证密钥和认证功能,也可和PS使用相同的认证密钥和认证功能。IMS的安全体系如图1所示。
图1中显示了5个不同的安全联盟用以满足IMS系统中不同的需求,分别用①、②、③、④、⑤来加以标识。①提供终端用户和IMS网络之间的相互认证。
②在UE和P-CSCF之间提供一个安全链接(Link)和一个安全联盟(SA),用以保护Gm接口,同时提供数据源认证。
③在网络域内为Cx接口提供安全。
④为不同网络之间的SIP节点提供安全,并且这个安全联盟只适用于代理呼叫会话控制功能(P-CSCF)位于拜访网络(VN)时。
⑤为同一网络内部的SIP节点提供安全,并且这个安全联盟同样适用于P-CSCF位于归属网络(HN)时。
除上述接口之外,IMS中还存在其他的接口,在上图中未完整标识出来,这些接口位于安全域内或是位于不同的安全域之间。这些接口(除了Gm接口之外)的保护都受IMS网络安全保护。
SIP信令的保密性和完整性是以逐跳的方式提供的,它包括一个复杂的安全体系,要求每个代理对消息进行解密。SIP使用两种安全协议:传输层安全协议(TLS)和IPSec,TLS可以实现认证、完整性和机密性,用TLS来保证安全的请求必须使用可靠的传输层协议,如传输控制协议(TCP)或流控制传输协议(SCTP);IPSec通过在IP层对SIP消息提供安全来实现认证、完整性和机密性,它同时支持TCP和用户数据报协议(UDP)。在IMS核心网中,可通过NDS/IP来完成对网络中SIP信令的保护;而第一跳,即UE和P-CSCF间的信令保护则需要附加的测量,在3GPP TS 33.203中有具体描述。
3、IMS的接入安全
IMS用户终端(UE)接入到IMS核心网需经一系列认证和密钥协商过程,具体而言,UE用户签约信息存储在归属网络的HSS中,且对外部实体保密。当用户发起注册请求时,查询呼叫会话控制功能(I-CSCF)将为请求用户分配一个服务呼叫会话控制功能(S-CSCF),用户的签约信息将通过Cx接口从HSS下载到S-CSCF中。当用户发起接入IMS请求时,该S-CSCF将通过对请求内容与用户签约信息进行比较,以决定用户是否被允许继续请求。
在IMS接入安全中,IPSec封装安全净荷(ESP)将在IP层为UE和P-CSCF间所有SIP信令提供机密性保护,对于呼叫会话控制功能(CSCF)之间和CSCF和HSS之间的加密可以通过安全网关(SEG)来实现。同时,IMS还采用IPSec ESP为UE和P-CSCF间所有SIP信令提供完整性保护,保护IP层的所有SIP信令,以传输模式提供完整性保护机制。
在完成注册鉴权之后,UE和P-CSCF之间同时建立两对单向的SA,这些SA由TCP和UDP共享。其中一对用于UE端口为客户端、P-CSCF端口作为服务器端的业务流,另一对用于UE端口为服务器、P-CSCF端口作为客户端的业务流。用两对SA可以允许终端和P-CSCF使用UDP在另一个端口上接收某个请求的响应,而不是使用发送请求的那个端口。同时,终端和P-CSCF之间使用TCP连接,在收到请求的同一个TCP连接上发送响应;而且通过建立SA实现在IMS AKA提供的共享密钥以及指明在保护方法的一系列参数上达成一致。SA的管理涉及到两个数据库,即内部和外部数据库(SPD和SAD)。SPD包含所有入站和出站业务流在主机或安全网关上进行分类的策略。SAD是所有激活SA与相关参数的容器。SPD使用一系列选择器将业务流映射到特定的SA,这些选择器包括IP层和上层(如TCP和UDP)协议的字段值。
与此同时,为了保护SIP代理的身份和网络运营商的网络运作内部细节,可通过选择网络隐藏机制来隐藏其网络内部拓扑,归属网络中的所有I-CSCF将共享一个加密和解密密钥。
在通用移动通信系统(UMTS)中相互认证机制称为UMTS AKA,在AKA过程中采用双向鉴权以防止未经授权的“非法”用户接入网络,以及未经授权的“非法”网络为用户提供服务。AKA协议是一种挑战响应协议,包含用户鉴权五元参数组的挑战由AUC在归属层发起而发送到服务网络。
UMTS系统中AKA协议,其相同的概念和原理被IMS系统重用,我们称之为IMS AKA。AKA实现了ISIM和AUC之间的相互认证,并建设了一对加密和完整性密钥。用来认证用户的身份是私有的身份(IMPI),HSS和ISIM共享一个与IMPI相关联的长期密钥。当网络发起一个包含RAND和AUTN的认证请求时,ISIM对AUTN进行验证,从而对网络本身的真实性进行验证。每个终端也为每一轮认证过程维护一个序列号,如果ISIM检测到超出了序列号码范围之外的认证请求,那么它就放弃该认证并向网络返回一个同步失败消息,其中包含了正确的序列号码。
为了响应网络的认证请求,ISIM将密钥应用于随机挑战(RAND),从而产生一个认证响应(RES)。网络对RES进行验证以认证ISIM。此时,UE和网络已经成功地完成了相互认证,并且生成了一对会话密钥:加密密钥(CK)和完整性密钥(IK)用以两个实体之间通信的安全保护。
4、IMS的网络安全
在第二代移动通信系统中,由于在核心网中缺乏标准的安全解决方案,使得安全问题尤为突出。虽然在无线接入过程中,移动用户终端和基站之间通常可由加密来保护,但是在核心网时,系统的节点之间却是以明文来传送业务流,这就让攻击者有机可乘,接入到这些媒体的攻击者可以轻而易举对整个通信过程进行窃听。
针对2G系统中的安全缺陷,第三代移动通信系统中采用NDS对核心网中的所有IP数据业务流进行保护。可以为通信服务提供保密性、数据完整性、认证和防止重放攻击,同时通过应用在IPSec中的密码安全机制和协议安全机制来解决安全问题。
在NDS中有几个重要的概念,它们分别是安全域(Security Domains)、安全网关(SEG)。
4.1安全域
NDS中最核心的概念是安全域,安全域是一个由单独的管理机构管理运营的网络。在同一安全域内采用统一的安全策略来管理,因此同一安全域内部的安全等级和安全服务通常是相同的。大多情况下,一个安全域直接对应着一个运营商的核心网,不过,一个运营商也可以运营多个安全域,每个安全域都是该运营商整个核心网络中的一个子集。在NDS/IP中,不同的安全域之间的接口定义为Za接口,同一个安全域内部的不同实体之间的安全接口则定义为Zb接口。其中Za接口为必选接口,Zb接口为可选接口。两种接口主要完成的功能是提供数据的认证和完整性、机密性保护。
4.2安全网关
SEG位于IP安全域的边界处,是保护安全域之间的边界。业务流通过一个SEG进入和离开安全域,SEG被用来处理通过Za接口的通信,将业务流通过隧道传送到已定义好的一组其他安全域。这称为轮轴-辐条(hub-and-spoke)模型,它为不同安全域之间提供逐跳的安全保护。SEG负责在不同安全域之间传送业务流时实施安全策略,也可以包括分组过滤或者防火墙等的功能。IMS核心网中的所有业务流都是通过SEG进行传送,每个安全域可以有一个或多个SEG,网络运营商可以设置多个SEG以避免某独立点出现故障或失败。当所保护的IMS业务流跨越不同安全域时,NDS/IP必须提供相应的机密性、数据完整性和认证。
4.3基于IP的网络域安全体系[2]
NDS/IP体系结构最基本的思想就是提供上从一跳到下一跳的安全,逐跳的安全也简化了内部和面向其他外部安全域分离的安全策略的操作。
在NDS/IP中只有SEG负责与其他安全域中的实体间进行直接通信。两个SEG之间的业务被采用隧道模式下的IPSec ESP安全联盟进行保护,安全网关之间的网络连接通过使用IKE来建立和维护[3]。网络实体(NE)能够面向某个安全网关或相同安全域的其他安全实体,建立维护所需的ESP安全联盟。所有来自不同安全域的网络实体的NDS/IP业务通过安全网关被路由,它将面向最终目标被提供逐跳的安全保护[5]。其网络域安全体系结构如图2所示。
4.4密钥管理和分配机制[5]每个SEG负责建立和维护与其对等SEG之间的IPSec SA。这些SA使用因特网密钥交换(IKE)协议进行协商,其中的认证使用保存在SEG中的长期有效的密钥来完成。每个对等连接的两个SA都是由SEG维护的:一个SA用于入向的业务流,另一个用于出向的业务流。另外,SEG还维护了一个单独的因特网安全联盟和密钥管理协议(ISAKMP)SA,这个SA与密钥管理有关,用于构建实际的对等主机之间的IPSec SA。对于ISAKMP SA而言,一个关键的前提就是这两个对等实体必须都已经通过认证。在NDS/IP中,认证是基于预先共享的密钥。
NDS/IP中用于加密、数据完整性保护和认证的安全协议是隧道模式的IPSec ESP。在隧道模式的ESP中,包括IP头的完整的IP数据包被封装到ESP分组中。对于三重DES加密(3DES)算法是强制使用的,而对于数据完整性和认证,MD5和SHA-1都可以使用。
4.5IPSec安全体系中的几个重要组成和概念[5]
1)IPSec:IPSec在IP层(包括IPv4和IPv6)提供了多种安全服务,从而为上层协议提供保护。IPSec一般用来保护主机和安全网关之间的通信安全,提供相应的安全服务。
2)ISAKMP:ISAKMP用来对SA和相关参数进行协商、建立、修改和删除。它定义了SA对等认证的创建和管理过程以及包格式,还有用于密钥产生的技术,它还包括缓解某些威胁的机制。
3)IKE:IKE是一种密钥交换协议,和ISAKMP一起,为SA协商认证密钥材料。IKE可以使用两种模式来建立第一阶段ISAKMP SA,即主模式和侵略性模式。两种模式均使用短暂的Diffie-Hellman密钥交换算法来生成ISAKMP SA的密钥材料。
4)ESP:ESP用来在IPv4和IPv6中提供安全服务。它可以单独使用或与AH一起使用,可提供机密性(如加密)或完整性(如认证)或同时提供两种功能。ESP可以工作在传送模式或隧道模式。在传送模式中,ESP头插入到IP数据报中IP头后面、所有上层协议头前面的位置;而在隧道模式中,它位于所封装的IP数据报之前。
标准化组织对IMS的安全体系和机制做了相应规定,其中UE和P-CSCF之间的安全由接入网络安全机制提供,IMS网络之上的安全由IP网络的安全机制保证,UE与IMS的承载层分组网络安全仍由原来的承载层安全机制支持。所有IP网络端到端安全基于IPSec,密钥管理基于IKE协议。对于移动终端接入IMS之前已经进行了相应的鉴权,所以安全性更高一些。但是对于固定终端来说,由于固定接入不存在类似移动网络空中接口的鉴权,P-CSCF将直接暴露给所有固定终端,这使P-CSCF更易受到攻击。为此,在IMS的接入安全方面有待于进一步的研究,需要不断完善IMS的安全机制。

阅读全文

与hss网络安全相关的资料

热点内容
网络共享中心没有网卡 浏览:304
电脑无法检测到网络代理 浏览:1200
笔记本电脑一天会用多少流量 浏览:317
苹果电脑整机转移新机 浏览:1212
突然无法连接工作网络 浏览:788
联通网络怎么设置才好 浏览:998
小区网络电脑怎么连接路由器 浏览:751
p1108打印机网络共享 浏览:1016
怎么调节台式电脑护眼 浏览:455
深圳天虹苹果电脑 浏览:695
网络总是异常断开 浏览:413
中级配置台式电脑 浏览:740
中国网络安全的战士 浏览:417
同志网站在哪里 浏览:1182
版观看完整完结免费手机在线 浏览:1261
怎样切换默认数据网络设置 浏览:910
肯德基无线网无法访问网络 浏览:1059
光纤猫怎么连接不上网络 浏览:1200
神武3手游网络连接 浏览:770
局网打印机网络共享 浏览:807